{"title":"改良了从蕨类植物中提取高分子量DNA的CTAB协议","authors":"Pei-Jun Xie, Ya-Ting Ke, Li-Yaung Kuo","doi":"10.1002/aps3.11526","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Efficient protocols for extracting high-molecular-weight (HMW) DNA from ferns facilitate the long-read sequencing of their large and complex genomes. Here, we perform two cetyltrimethylammonium bromide (CTAB)-based protocols to extract HMW DNA and evaluate their applicability in diverse fern taxa for the first time.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>We describe two modified CTAB protocols, with key adjustments to minimize mechanical disruption during lysis to prevent DNA shearing. One of these protocols uses a small amount of fresh tissue but yields a considerable quantity of HMW DNA with high efficiency. The other accommodates a large amount of input tissue, adopts an initial step of nuclei isolation, and thus ensures a high yield in a short period of time. Both methods were proven to be robust and effective in obtaining HMW DNA from diverse fern lineages, including 33 species in 19 families. The DNA extractions mostly had high DNA integrity, with mean sizes larger than 50 kbp, as well as high purity (A<sub>260</sub>/A<sub>230</sub> and A<sub>260</sub>/A<sub>280</sub> > 1.8).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This study provides HMW DNA extraction protocols for ferns in the hope of facilitating further attempts to sequence their genomes, which will bridge our genomic understanding of land plant diversity.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":"11 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/c2/APS3-11-e11526.PMC10278929.pdf","citationCount":"4","resultStr":"{\"title\":\"Modified CTAB protocols for high-molecular-weight DNA extractions from ferns\",\"authors\":\"Pei-Jun Xie, Ya-Ting Ke, Li-Yaung Kuo\",\"doi\":\"10.1002/aps3.11526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>Efficient protocols for extracting high-molecular-weight (HMW) DNA from ferns facilitate the long-read sequencing of their large and complex genomes. Here, we perform two cetyltrimethylammonium bromide (CTAB)-based protocols to extract HMW DNA and evaluate their applicability in diverse fern taxa for the first time.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p>We describe two modified CTAB protocols, with key adjustments to minimize mechanical disruption during lysis to prevent DNA shearing. One of these protocols uses a small amount of fresh tissue but yields a considerable quantity of HMW DNA with high efficiency. The other accommodates a large amount of input tissue, adopts an initial step of nuclei isolation, and thus ensures a high yield in a short period of time. Both methods were proven to be robust and effective in obtaining HMW DNA from diverse fern lineages, including 33 species in 19 families. The DNA extractions mostly had high DNA integrity, with mean sizes larger than 50 kbp, as well as high purity (A<sub>260</sub>/A<sub>230</sub> and A<sub>260</sub>/A<sub>280</sub> > 1.8).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>This study provides HMW DNA extraction protocols for ferns in the hope of facilitating further attempts to sequence their genomes, which will bridge our genomic understanding of land plant diversity.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/32/c2/APS3-11-e11526.PMC10278929.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11526\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11526","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Modified CTAB protocols for high-molecular-weight DNA extractions from ferns
Premise
Efficient protocols for extracting high-molecular-weight (HMW) DNA from ferns facilitate the long-read sequencing of their large and complex genomes. Here, we perform two cetyltrimethylammonium bromide (CTAB)-based protocols to extract HMW DNA and evaluate their applicability in diverse fern taxa for the first time.
Methods and Results
We describe two modified CTAB protocols, with key adjustments to minimize mechanical disruption during lysis to prevent DNA shearing. One of these protocols uses a small amount of fresh tissue but yields a considerable quantity of HMW DNA with high efficiency. The other accommodates a large amount of input tissue, adopts an initial step of nuclei isolation, and thus ensures a high yield in a short period of time. Both methods were proven to be robust and effective in obtaining HMW DNA from diverse fern lineages, including 33 species in 19 families. The DNA extractions mostly had high DNA integrity, with mean sizes larger than 50 kbp, as well as high purity (A260/A230 and A260/A280 > 1.8).
Conclusions
This study provides HMW DNA extraction protocols for ferns in the hope of facilitating further attempts to sequence their genomes, which will bridge our genomic understanding of land plant diversity.
期刊介绍:
Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences.
APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.