新型聚(2-羟乙基甲基丙烯酸酯)-壳聚糖水凝胶负载氧化铈纳米复合材料的合成与表征及其在慢性创面护理中的应用

IF 3.8 4区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Jingna Luo, Weijun Liu, Qiaoling Xie, Jianshu He, Liyan Jiang
{"title":"新型聚(2-羟乙基甲基丙烯酸酯)-壳聚糖水凝胶负载氧化铈纳米复合材料的合成与表征及其在慢性创面护理中的应用","authors":"Jingna Luo,&nbsp;Weijun Liu,&nbsp;Qiaoling Xie,&nbsp;Jianshu He,&nbsp;Liyan Jiang","doi":"10.1049/nbt2.12118","DOIUrl":null,"url":null,"abstract":"<p>This study was designed to establish the composition of wound dressing based on poly(2-hydroxyethylmethacrylate)-chitosan (PHEM-CS) hydrogels-loaded cerium oxide nanoparticle (CeONPs) composites for cutaneous wound healing on nursing care of the chronic wound. The as-synthesised PHEM-CS/CeONPs hydrogels nanocomposites were characterised by using UV–visible spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermo gravimetric analysis. The influence of PHEM-CS/CeONPs hydrogels nanocomposites on the gelation time, swelling ratio, in vitro degradation, and mechanical properties was investigated. The as-prepared PHEM-CS/CeONPs hydrogels nanocomposites dressing shows high antimicrobial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. Similar trends were observed for the treatment of biofilms where PHEM-CS/CeONPs hydrogels nanocomposites displayed better efficiency. Furthermore, the biological properties of PHEM-CS/CeONPs hydrogels nanocomposites had non-toxic in cell viability and excellent cell adhesion behaviour. After 2 weeks, the wounds treated with the PHEM-CS/CeONPs hydrogels nanocomposite wound dressing achieved a significant closure to 98.5 ± 4.95% compared with the PHEM-CS hydrogels with nearly 71 ± 3.55% of wound closure. Hence, this study strongly supports the possibility of using this novel PHEM-CS/CeONPs hydrogels nanocomposites wound dressing for efficient cutaneous wound healing on chronic wound infection and nursing care.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":"17 4","pages":"312-325"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12118","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterisation of a novel poly(2-hydroxyethylmethacrylate)-chitosan hydrogels loaded cerium oxide nanocomposites dressing on cutaneous wound healing on nursing care of chronic wound\",\"authors\":\"Jingna Luo,&nbsp;Weijun Liu,&nbsp;Qiaoling Xie,&nbsp;Jianshu He,&nbsp;Liyan Jiang\",\"doi\":\"10.1049/nbt2.12118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study was designed to establish the composition of wound dressing based on poly(2-hydroxyethylmethacrylate)-chitosan (PHEM-CS) hydrogels-loaded cerium oxide nanoparticle (CeONPs) composites for cutaneous wound healing on nursing care of the chronic wound. The as-synthesised PHEM-CS/CeONPs hydrogels nanocomposites were characterised by using UV–visible spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermo gravimetric analysis. The influence of PHEM-CS/CeONPs hydrogels nanocomposites on the gelation time, swelling ratio, in vitro degradation, and mechanical properties was investigated. The as-prepared PHEM-CS/CeONPs hydrogels nanocomposites dressing shows high antimicrobial activity against <i>Staphylococcus aureus</i> and <i>Escherichia coli</i>. Similar trends were observed for the treatment of biofilms where PHEM-CS/CeONPs hydrogels nanocomposites displayed better efficiency. Furthermore, the biological properties of PHEM-CS/CeONPs hydrogels nanocomposites had non-toxic in cell viability and excellent cell adhesion behaviour. After 2 weeks, the wounds treated with the PHEM-CS/CeONPs hydrogels nanocomposite wound dressing achieved a significant closure to 98.5 ± 4.95% compared with the PHEM-CS hydrogels with nearly 71 ± 3.55% of wound closure. Hence, this study strongly supports the possibility of using this novel PHEM-CS/CeONPs hydrogels nanocomposites wound dressing for efficient cutaneous wound healing on chronic wound infection and nursing care.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":\"17 4\",\"pages\":\"312-325\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12118\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12118\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12118","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在建立基于聚(2-羟乙基甲基丙烯酸酯)-壳聚糖(PHEM-CS)水凝胶负载氧化铈纳米颗粒(CeONPs)复合材料的创面敷料在慢性创面护理中的应用。采用紫外可见光谱、扫描电镜、傅里叶变换红外光谱、x射线衍射和热重分析对合成的PHEM-CS/CeONPs水凝胶纳米复合材料进行了表征。考察了PHEM-CS/CeONPs水凝胶纳米复合材料对凝胶化时间、溶胀比、体外降解和力学性能的影响。制备的PHEM-CS/CeONPs水凝胶纳米复合敷料对金黄色葡萄球菌和大肠杆菌具有较高的抗菌活性。PHEM-CS/CeONPs水凝胶纳米复合材料对生物膜的处理也有类似的趋势。此外,PHEM-CS/CeONPs水凝胶纳米复合材料具有细胞活力无毒和良好的细胞粘附性能。2周后,PHEM-CS/CeONPs水凝胶纳米复合创面敷料创面愈合率为98.5±4.95%,PHEM-CS水凝胶创面愈合率为71±3.55%。因此,本研究有力地支持了这种新型PHEM-CS/CeONPs水凝胶纳米复合材料伤口敷料用于慢性伤口感染的有效皮肤伤口愈合和护理的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis and characterisation of a novel poly(2-hydroxyethylmethacrylate)-chitosan hydrogels loaded cerium oxide nanocomposites dressing on cutaneous wound healing on nursing care of chronic wound

Synthesis and characterisation of a novel poly(2-hydroxyethylmethacrylate)-chitosan hydrogels loaded cerium oxide nanocomposites dressing on cutaneous wound healing on nursing care of chronic wound

This study was designed to establish the composition of wound dressing based on poly(2-hydroxyethylmethacrylate)-chitosan (PHEM-CS) hydrogels-loaded cerium oxide nanoparticle (CeONPs) composites for cutaneous wound healing on nursing care of the chronic wound. The as-synthesised PHEM-CS/CeONPs hydrogels nanocomposites were characterised by using UV–visible spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermo gravimetric analysis. The influence of PHEM-CS/CeONPs hydrogels nanocomposites on the gelation time, swelling ratio, in vitro degradation, and mechanical properties was investigated. The as-prepared PHEM-CS/CeONPs hydrogels nanocomposites dressing shows high antimicrobial activity against Staphylococcus aureus and Escherichia coli. Similar trends were observed for the treatment of biofilms where PHEM-CS/CeONPs hydrogels nanocomposites displayed better efficiency. Furthermore, the biological properties of PHEM-CS/CeONPs hydrogels nanocomposites had non-toxic in cell viability and excellent cell adhesion behaviour. After 2 weeks, the wounds treated with the PHEM-CS/CeONPs hydrogels nanocomposite wound dressing achieved a significant closure to 98.5 ± 4.95% compared with the PHEM-CS hydrogels with nearly 71 ± 3.55% of wound closure. Hence, this study strongly supports the possibility of using this novel PHEM-CS/CeONPs hydrogels nanocomposites wound dressing for efficient cutaneous wound healing on chronic wound infection and nursing care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET nanobiotechnology
IET nanobiotechnology 工程技术-纳米科技
CiteScore
6.20
自引率
4.30%
发文量
34
审稿时长
1 months
期刊介绍: Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level. Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries. IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to: Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques) Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools) Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles) Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance Techniques for probing cell physiology, cell adhesion sites and cell-cell communication Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology Societal issues such as health and the environment Special issues. Call for papers: Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信