Sahil Luthra , Hannah Mechtenberg , Cristal Giorio , Rachel M. Theodore , James S. Magnuson , Emily B. Myers
{"title":"利用经颅磁刺激评价右侧后颞叶皮层在说话特异性语音加工中的因果作用","authors":"Sahil Luthra , Hannah Mechtenberg , Cristal Giorio , Rachel M. Theodore , James S. Magnuson , Emily B. Myers","doi":"10.1016/j.bandl.2023.105264","DOIUrl":null,"url":null,"abstract":"<div><p>Theories suggest that speech perception is informed by listeners’ beliefs of what phonetic variation is typical of a talker. A previous fMRI study found right middle temporal gyrus (RMTG) sensitivity to whether a phonetic variant was typical of a talker, consistent with literature suggesting that the right hemisphere may play a key role in conditioning phonetic identity on talker information. The current work used transcranial magnetic stimulation (TMS) to test whether the RMTG plays a causal role in processing talker-specific phonetic variation. Listeners were exposed to talkers who differed in how they produced voiceless stop consonants while TMS was applied to RMTG, left MTG, or scalp vertex. Listeners subsequently showed near-ceiling performance in indicating which of two variants was typical of a trained talker, regardless of previous stimulation site. Thus, even though the RMTG is recruited for talker-specific phonetic processing, modulation of its function may have only modest consequences.</p></div>","PeriodicalId":55330,"journal":{"name":"Brain and Language","volume":"240 ","pages":"Article 105264"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286152/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using TMS to evaluate a causal role for right posterior temporal cortex in talker-specific phonetic processing\",\"authors\":\"Sahil Luthra , Hannah Mechtenberg , Cristal Giorio , Rachel M. Theodore , James S. Magnuson , Emily B. Myers\",\"doi\":\"10.1016/j.bandl.2023.105264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Theories suggest that speech perception is informed by listeners’ beliefs of what phonetic variation is typical of a talker. A previous fMRI study found right middle temporal gyrus (RMTG) sensitivity to whether a phonetic variant was typical of a talker, consistent with literature suggesting that the right hemisphere may play a key role in conditioning phonetic identity on talker information. The current work used transcranial magnetic stimulation (TMS) to test whether the RMTG plays a causal role in processing talker-specific phonetic variation. Listeners were exposed to talkers who differed in how they produced voiceless stop consonants while TMS was applied to RMTG, left MTG, or scalp vertex. Listeners subsequently showed near-ceiling performance in indicating which of two variants was typical of a trained talker, regardless of previous stimulation site. Thus, even though the RMTG is recruited for talker-specific phonetic processing, modulation of its function may have only modest consequences.</p></div>\",\"PeriodicalId\":55330,\"journal\":{\"name\":\"Brain and Language\",\"volume\":\"240 \",\"pages\":\"Article 105264\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10286152/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Language\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0093934X23000433\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Language","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093934X23000433","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
Using TMS to evaluate a causal role for right posterior temporal cortex in talker-specific phonetic processing
Theories suggest that speech perception is informed by listeners’ beliefs of what phonetic variation is typical of a talker. A previous fMRI study found right middle temporal gyrus (RMTG) sensitivity to whether a phonetic variant was typical of a talker, consistent with literature suggesting that the right hemisphere may play a key role in conditioning phonetic identity on talker information. The current work used transcranial magnetic stimulation (TMS) to test whether the RMTG plays a causal role in processing talker-specific phonetic variation. Listeners were exposed to talkers who differed in how they produced voiceless stop consonants while TMS was applied to RMTG, left MTG, or scalp vertex. Listeners subsequently showed near-ceiling performance in indicating which of two variants was typical of a trained talker, regardless of previous stimulation site. Thus, even though the RMTG is recruited for talker-specific phonetic processing, modulation of its function may have only modest consequences.
期刊介绍:
An interdisciplinary journal, Brain and Language publishes articles that elucidate the complex relationships among language, brain, and behavior. The journal covers the large variety of modern techniques in cognitive neuroscience, including functional and structural brain imaging, electrophysiology, cellular and molecular neurobiology, genetics, lesion-based approaches, and computational modeling. All articles must relate to human language and be relevant to the understanding of its neurobiological and neurocognitive bases. Published articles in the journal are expected to have significant theoretical novelty and/or practical implications, and use perspectives and methods from psychology, linguistics, and neuroscience along with brain data and brain measures.