利用CRSIPR/Cas13体系对龙葵多株pvy的广谱抗性

IF 4.5 2区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Azka Noureen, Muhammad Zuhaib Khan, Imran Amin, Tayyaba Zainab, Nasim Ahmad, Sibtain Haider, Shahid Mansoor
{"title":"利用CRSIPR/Cas13体系对龙葵多株pvy的广谱抗性","authors":"Azka Noureen,&nbsp;Muhammad Zuhaib Khan,&nbsp;Imran Amin,&nbsp;Tayyaba Zainab,&nbsp;Nasim Ahmad,&nbsp;Sibtain Haider,&nbsp;Shahid Mansoor","doi":"10.1080/21645698.2022.2080481","DOIUrl":null,"url":null,"abstract":"<p><p><i>Potato virus Y</i> (PVY) is a deadly environmental constraint that damages productivity of potato (<i>Solanum tuberosum</i>) around the globe. One of the major challenges is to develop resistance against PVY. Emerging clustered regularly short palindromic repeat (CRISPR)/Cas systems have the potential to develop resistance against PVY. In the current research, CRISPR-Cas13 has been exploited to target multiple strains of PVY<sup>N</sup>, PVY<sup>O</sup>, and PVY<sup>NTN</sup>. Multiple genes <i>PI, HC-Pro</i>, P3, <i>Cl1, Cl2</i>, and <i>VPg</i> genes of PVY were targeted by CRISPR/Cas13a. Multiplex gRNA cassettes were developed on the conserved regions of the PVY-genes. Three independent CRISPR/Cas13 transgenic potato lines were developed by applying an optimized concentration of trans-ribo zeatin and indole acetic acid at callus development, rooting, and shooting growth stages. The level of resistance in transgenic plants was confirmed through double-antibody sandwich enzyme-linked immunosorbent assay and real-time quantitative PCR. Our results have shown that efficiency of PVY inhibition was positively correlated with the Cas13a/sgRNA expression. Finding provides the specific functionality of Cas13 with specific gRNA cassette and engineering the potential resistance in potato crop against multiple strains of PVY.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"13 1","pages":"97-111"},"PeriodicalIF":4.5000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176253/pdf/","citationCount":"7","resultStr":"{\"title\":\"Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in <i>Solanum tuberosum</i> crop.\",\"authors\":\"Azka Noureen,&nbsp;Muhammad Zuhaib Khan,&nbsp;Imran Amin,&nbsp;Tayyaba Zainab,&nbsp;Nasim Ahmad,&nbsp;Sibtain Haider,&nbsp;Shahid Mansoor\",\"doi\":\"10.1080/21645698.2022.2080481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Potato virus Y</i> (PVY) is a deadly environmental constraint that damages productivity of potato (<i>Solanum tuberosum</i>) around the globe. One of the major challenges is to develop resistance against PVY. Emerging clustered regularly short palindromic repeat (CRISPR)/Cas systems have the potential to develop resistance against PVY. In the current research, CRISPR-Cas13 has been exploited to target multiple strains of PVY<sup>N</sup>, PVY<sup>O</sup>, and PVY<sup>NTN</sup>. Multiple genes <i>PI, HC-Pro</i>, P3, <i>Cl1, Cl2</i>, and <i>VPg</i> genes of PVY were targeted by CRISPR/Cas13a. Multiplex gRNA cassettes were developed on the conserved regions of the PVY-genes. Three independent CRISPR/Cas13 transgenic potato lines were developed by applying an optimized concentration of trans-ribo zeatin and indole acetic acid at callus development, rooting, and shooting growth stages. The level of resistance in transgenic plants was confirmed through double-antibody sandwich enzyme-linked immunosorbent assay and real-time quantitative PCR. Our results have shown that efficiency of PVY inhibition was positively correlated with the Cas13a/sgRNA expression. Finding provides the specific functionality of Cas13 with specific gRNA cassette and engineering the potential resistance in potato crop against multiple strains of PVY.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\"13 1\",\"pages\":\"97-111\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9176253/pdf/\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2022.2080481\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2022.2080481","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

马铃薯Y型病毒(PVY)是一种危害马铃薯(Solanum tuberosum)产量的致命环境因子。主要的挑战之一是发展对PVY的抵抗力。新兴的聚集性短回文重复(CRISPR)/Cas系统有可能对PVY产生耐药性。在目前的研究中,CRISPR-Cas13已被用于靶向PVYN、PVYO和PVYNTN的多个菌株。利用CRISPR/Cas13a靶向PVY的多个基因PI、HC-Pro、P3、Cl1、Cl2和VPg。在pvy基因的保守区域上形成了多重gRNA磁带。通过在愈伤组织发育、生根和脱芽三个阶段分别施用最佳浓度的反式核糖玉米素和吲哚乙酸,获得了3个独立的CRISPR/Cas13转基因马铃薯品系。通过双抗体夹心酶联免疫吸附试验和实时定量PCR验证转基因植株的抗性水平。我们的研究结果表明PVY抑制效率与Cas13a/sgRNA表达呈正相关。该发现提供了Cas13与特定gRNA盒的特定功能,并设计了马铃薯作物对多种PVY菌株的潜在抗性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in <i>Solanum tuberosum</i> crop.

Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in <i>Solanum tuberosum</i> crop.

Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in <i>Solanum tuberosum</i> crop.

Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in Solanum tuberosum crop.

Potato virus Y (PVY) is a deadly environmental constraint that damages productivity of potato (Solanum tuberosum) around the globe. One of the major challenges is to develop resistance against PVY. Emerging clustered regularly short palindromic repeat (CRISPR)/Cas systems have the potential to develop resistance against PVY. In the current research, CRISPR-Cas13 has been exploited to target multiple strains of PVYN, PVYO, and PVYNTN. Multiple genes PI, HC-Pro, P3, Cl1, Cl2, and VPg genes of PVY were targeted by CRISPR/Cas13a. Multiplex gRNA cassettes were developed on the conserved regions of the PVY-genes. Three independent CRISPR/Cas13 transgenic potato lines were developed by applying an optimized concentration of trans-ribo zeatin and indole acetic acid at callus development, rooting, and shooting growth stages. The level of resistance in transgenic plants was confirmed through double-antibody sandwich enzyme-linked immunosorbent assay and real-time quantitative PCR. Our results have shown that efficiency of PVY inhibition was positively correlated with the Cas13a/sgRNA expression. Finding provides the specific functionality of Cas13 with specific gRNA cassette and engineering the potential resistance in potato crop against multiple strains of PVY.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
8.10
自引率
10.30%
发文量
22
期刊介绍: GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers. GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer. Topics covered include, but are not limited to: • Production and analysis of transgenic crops • Gene insertion studies • Gene silencing • Factors affecting gene expression • Post-translational analysis • Molecular farming • Field trial analysis • Commercialization of modified crops • Safety and regulatory affairs BIOLOGICAL SCIENCE AND TECHNOLOGY • Biofuels • Data from field trials • Development of transformation technology • Elimination of pollutants (Bioremediation) • Gene silencing mechanisms • Genome Editing • Herbicide resistance • Molecular farming • Pest resistance • Plant reproduction (e.g., male sterility, hybrid breeding, apomixis) • Plants with altered composition • Tolerance to abiotic stress • Transgenesis in agriculture • Biofortification and nutrients improvement • Genomic, proteomic and bioinformatics methods used for developing GM cops ECONOMIC, POLITICAL AND SOCIAL ISSUES • Commercialization • Consumer attitudes • International bodies • National and local government policies • Public perception, intellectual property, education, (bio)ethical issues • Regulation, environmental impact and containment • Socio-economic impact • Food safety and security • Risk assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信