{"title":"基于纸张的垂直流免疫测定用于辐射剂量测定基因的护理点多重检测。","authors":"Jerome Lacombe, Alexander J Summers, Ashkan Khanishayan, Yasaman Khorsandian, Isabella Hacey, Wyatt Blackson, Frederic Zenhausern","doi":"10.1159/000531702","DOIUrl":null,"url":null,"abstract":"<p><p>In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance <20% and <10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Paper-Based Vertical Flow Immunoassay for the Point-of-Care Multiplex Detection of Radiation Dosimetry Genes.\",\"authors\":\"Jerome Lacombe, Alexander J Summers, Ashkan Khanishayan, Yasaman Khorsandian, Isabella Hacey, Wyatt Blackson, Frederic Zenhausern\",\"doi\":\"10.1159/000531702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance <20% and <10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.</p>\",\"PeriodicalId\":11206,\"journal\":{\"name\":\"Cytogenetic and Genome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytogenetic and Genome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000531702\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000531702","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Paper-Based Vertical Flow Immunoassay for the Point-of-Care Multiplex Detection of Radiation Dosimetry Genes.
In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance <20% and <10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.
期刊介绍:
During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.