基于纸张的垂直流免疫测定用于辐射剂量测定基因的护理点多重检测。

IF 1.7 4区 生物学 Q4 CELL BIOLOGY
Cytogenetic and Genome Research Pub Date : 2023-01-01 Epub Date: 2023-06-27 DOI:10.1159/000531702
Jerome Lacombe, Alexander J Summers, Ashkan Khanishayan, Yasaman Khorsandian, Isabella Hacey, Wyatt Blackson, Frederic Zenhausern
{"title":"基于纸张的垂直流免疫测定用于辐射剂量测定基因的护理点多重检测。","authors":"Jerome Lacombe, Alexander J Summers, Ashkan Khanishayan, Yasaman Khorsandian, Isabella Hacey, Wyatt Blackson, Frederic Zenhausern","doi":"10.1159/000531702","DOIUrl":null,"url":null,"abstract":"<p><p>In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance &lt;20% and &lt;10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751381/pdf/","citationCount":"0","resultStr":"{\"title\":\"Paper-Based Vertical Flow Immunoassay for the Point-of-Care Multiplex Detection of Radiation Dosimetry Genes.\",\"authors\":\"Jerome Lacombe, Alexander J Summers, Ashkan Khanishayan, Yasaman Khorsandian, Isabella Hacey, Wyatt Blackson, Frederic Zenhausern\",\"doi\":\"10.1159/000531702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance &lt;20% and &lt;10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.</p>\",\"PeriodicalId\":11206,\"journal\":{\"name\":\"Cytogenetic and Genome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751381/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytogenetic and Genome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000531702\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000531702","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在核事故或放射性事故中,急救人员必须快速准确地测量平民的辐射暴露量,因为医疗对策具有辐射剂量依赖性和时间敏感性。尽管已经探索了几种测量吸收辐射剂量的方法,但仍然需要开发可立即用于对数千名可能暴露于辐射的个人进行分类的护理点(POC)生物测定设备。。在这里,我们提出了一项概念验证研究,表明使用纸基垂直流免疫测定法(VFI)来检测辐射剂量测定基因。在扩增过程中使用标记引物和多重膜,我们的结果表明,核酸VFI可以同时检测两个生物剂量基因CDKN1A和DDB2,以及一个管家基因MRPS5。该测定显示出良好的线性和精密度,测定间和测定内的变异系数分别<20%和<10%。此外,该检测显示出其区分未辐照对照(0 Gy)和辐照样本(1+2 Gy)的能力(p=0.004)。有趣的是,该基因组合对0、1和2 Gy也显示出剂量依赖性反应,类似于实时PCR基准获得的数据。这些初步结果表明,VFI平台可以用于同时检测多个基因,然后对其进行量化,从而为POC生物剂量测定提供了一种新的方法,该方法可以快速部署在现场,对大量人群进行检测,并有助于放射事件后的分诊和医疗管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Paper-Based Vertical Flow Immunoassay for the Point-of-Care Multiplex Detection of Radiation Dosimetry Genes.

In a nuclear or radiological incident, first responders must quickly and accurately measure radiation exposure among civilians as medical countermeasures are radiation dose-dependent and time-sensitive. Although several approaches have been explored to measure absorbed radiation dose, there is an important need to develop point-of-care (POC) bioassay devices that can be used immediately to triage thousands of individuals potentially exposed to radiation. Here we present a proof-of-concept study showing the use of a paper-based vertical flow immunoassay (VFI) to detect radiation dosimetry genes. Using labeled primers during amplification and a multiplex membrane, our results showed that the nucleic acid VFI can simultaneously detect two biodosimetry genes, CDKN1A and DDB2, as well as one housekeeping gene MRPS5. The assay demonstrated good linearity and precision with an inter- and intra-assay coefficient of variance <20% and <10%, respectively. Moreover, the assay showed its ability to discriminate non-irradiated controls (0 Gy) from irradiated samples (1 + 2 Gy) with an overall sensitivity of 62.5% and specificity of 100% (AUC = 0.8672, 95% CI: 0.723-1.000; p = 0.004). Interestingly, the gene combination also showed a dose-dependent response for 0, 1, and 2 Gy, similar to data obtained by real-time PCR benchmark. These preliminary results suggest that a VFI platform can be used to detect simultaneously multiple genes that can be then quantified, thus offering a new approach for a POC biodosimetry assay that could be rapidly deployed on-site to test a large population and help triage and medical management after radiological event.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytogenetic and Genome Research
Cytogenetic and Genome Research 生物-细胞生物学
CiteScore
3.10
自引率
5.90%
发文量
25
审稿时长
1 months
期刊介绍: During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信