{"title":"ERBIN和磷酸葡萄糖变位酶3缺乏。","authors":"Joshua D Milner","doi":"10.1016/j.coi.2023.102353","DOIUrl":null,"url":null,"abstract":"<div><p>ERBIN and phosphoglucomutase<span><span><span> 3 (PGM3) mutations both lead to rare primary atopic disorders characterized by allergic disease and connective tissue abnormalities, though each disorder has its own rather unique pattern of multisystem presentations. Pathway studies show how ERBIN mutations allow for enhanced TGFb signaling, and prevent </span>STAT3 from negative-regulating TGFb signaling. This likely explains many elements of clinical overlap between disorders of STAT3 and TGFb signaling. The excessive TGFb signaling leading to increased IL-4 receptor expression also provides the rationale for precision-based therapy blocking the IL-4 receptor to treat the </span>atopic disease<span>. The mechanism by which PGM3 deficiency leads to atopic phenotypes is not well understood, nor is the broad variability in disease penetrance and expressivity, though preliminary studies suggest an overlap with IL-6 receptor signaling defects.</span></span></p></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":"84 ","pages":"Article 102353"},"PeriodicalIF":6.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ERBIN and phosphoglucomutase 3 deficiency\",\"authors\":\"Joshua D Milner\",\"doi\":\"10.1016/j.coi.2023.102353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>ERBIN and phosphoglucomutase<span><span><span> 3 (PGM3) mutations both lead to rare primary atopic disorders characterized by allergic disease and connective tissue abnormalities, though each disorder has its own rather unique pattern of multisystem presentations. Pathway studies show how ERBIN mutations allow for enhanced TGFb signaling, and prevent </span>STAT3 from negative-regulating TGFb signaling. This likely explains many elements of clinical overlap between disorders of STAT3 and TGFb signaling. The excessive TGFb signaling leading to increased IL-4 receptor expression also provides the rationale for precision-based therapy blocking the IL-4 receptor to treat the </span>atopic disease<span>. The mechanism by which PGM3 deficiency leads to atopic phenotypes is not well understood, nor is the broad variability in disease penetrance and expressivity, though preliminary studies suggest an overlap with IL-6 receptor signaling defects.</span></span></p></div>\",\"PeriodicalId\":11361,\"journal\":{\"name\":\"Current Opinion in Immunology\",\"volume\":\"84 \",\"pages\":\"Article 102353\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952791523000729\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791523000729","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
ERBIN and phosphoglucomutase 3 (PGM3) mutations both lead to rare primary atopic disorders characterized by allergic disease and connective tissue abnormalities, though each disorder has its own rather unique pattern of multisystem presentations. Pathway studies show how ERBIN mutations allow for enhanced TGFb signaling, and prevent STAT3 from negative-regulating TGFb signaling. This likely explains many elements of clinical overlap between disorders of STAT3 and TGFb signaling. The excessive TGFb signaling leading to increased IL-4 receptor expression also provides the rationale for precision-based therapy blocking the IL-4 receptor to treat the atopic disease. The mechanism by which PGM3 deficiency leads to atopic phenotypes is not well understood, nor is the broad variability in disease penetrance and expressivity, though preliminary studies suggest an overlap with IL-6 receptor signaling defects.
期刊介绍:
Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students.
Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.