Brian H. Tang , Juan Fang , Alicia Bentley , Gerard Kilroy , Masuo Nakano , Myung-Sook Park , V.P.M. Rajasree , Zhuo Wang , Allison A. Wing , Liguang Wu
{"title":"热带气旋形成的最新研究进展","authors":"Brian H. Tang , Juan Fang , Alicia Bentley , Gerard Kilroy , Masuo Nakano , Myung-Sook Park , V.P.M. Rajasree , Zhuo Wang , Allison A. Wing , Liguang Wu","doi":"10.1016/j.tcrr.2020.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>This review article summarizes recent (2014–2019) advances in our understanding of tropical cyclogenesis, stemming from activities at the ninth International Workshop on Tropical Cyclones. Tropical cyclogenesis involves the interaction of dynamic and thermodynamic processes at multiple spatio-temporal scales. Studies have furthered our understanding of how tropical cyclogenesis may be affected by external processes, such as intraseasonal oscillations, monsoon circulations, the intertropical convergence zone, and midlatitude troughs and cutoff lows. Additionally, studies have furthered our understanding of how tropical cyclogenesis may be affected by internal processes, such as the organization of deep convection; the evolution of the “pouch” structure; the role of friction; the development of the moist, warm core; the importance of surface fluxes; and the role of the mid-level vortex. A relatively recent class of idealized, numerical simulations of tropical cyclogenesis in radiative-convective equilibrium have highlighted the potential importance of radiative feedbacks on tropical cyclogenesis. We also offer some recommendations to the community on future directions for tropical cyclogenesis research.</p></div>","PeriodicalId":44442,"journal":{"name":"Tropical Cyclone Research and Review","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.tcrr.2020.04.004","citationCount":"19","resultStr":"{\"title\":\"Recent advances in research on tropical cyclogenesis\",\"authors\":\"Brian H. Tang , Juan Fang , Alicia Bentley , Gerard Kilroy , Masuo Nakano , Myung-Sook Park , V.P.M. Rajasree , Zhuo Wang , Allison A. Wing , Liguang Wu\",\"doi\":\"10.1016/j.tcrr.2020.04.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This review article summarizes recent (2014–2019) advances in our understanding of tropical cyclogenesis, stemming from activities at the ninth International Workshop on Tropical Cyclones. Tropical cyclogenesis involves the interaction of dynamic and thermodynamic processes at multiple spatio-temporal scales. Studies have furthered our understanding of how tropical cyclogenesis may be affected by external processes, such as intraseasonal oscillations, monsoon circulations, the intertropical convergence zone, and midlatitude troughs and cutoff lows. Additionally, studies have furthered our understanding of how tropical cyclogenesis may be affected by internal processes, such as the organization of deep convection; the evolution of the “pouch” structure; the role of friction; the development of the moist, warm core; the importance of surface fluxes; and the role of the mid-level vortex. A relatively recent class of idealized, numerical simulations of tropical cyclogenesis in radiative-convective equilibrium have highlighted the potential importance of radiative feedbacks on tropical cyclogenesis. We also offer some recommendations to the community on future directions for tropical cyclogenesis research.</p></div>\",\"PeriodicalId\":44442,\"journal\":{\"name\":\"Tropical Cyclone Research and Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.tcrr.2020.04.004\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tropical Cyclone Research and Review\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2225603220300187\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical Cyclone Research and Review","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2225603220300187","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Recent advances in research on tropical cyclogenesis
This review article summarizes recent (2014–2019) advances in our understanding of tropical cyclogenesis, stemming from activities at the ninth International Workshop on Tropical Cyclones. Tropical cyclogenesis involves the interaction of dynamic and thermodynamic processes at multiple spatio-temporal scales. Studies have furthered our understanding of how tropical cyclogenesis may be affected by external processes, such as intraseasonal oscillations, monsoon circulations, the intertropical convergence zone, and midlatitude troughs and cutoff lows. Additionally, studies have furthered our understanding of how tropical cyclogenesis may be affected by internal processes, such as the organization of deep convection; the evolution of the “pouch” structure; the role of friction; the development of the moist, warm core; the importance of surface fluxes; and the role of the mid-level vortex. A relatively recent class of idealized, numerical simulations of tropical cyclogenesis in radiative-convective equilibrium have highlighted the potential importance of radiative feedbacks on tropical cyclogenesis. We also offer some recommendations to the community on future directions for tropical cyclogenesis research.
期刊介绍:
Tropical Cyclone Research and Review is an international journal focusing on tropical cyclone monitoring, forecasting, and research as well as associated hydrological effects and disaster risk reduction. This journal is edited and published by the ESCAP/WMO Typhoon Committee (TC) and the Shanghai Typhoon Institute of the China Meteorology Administration (STI/CMA). Contributions from all tropical cyclone basins are welcome.
Scope of the journal includes:
• Reviews of tropical cyclones exhibiting unusual characteristics or behavior or resulting in disastrous impacts on Typhoon Committee Members and other regional WMO bodies
• Advances in applied and basic tropical cyclone research or technology to improve tropical cyclone forecasts and warnings
• Basic theoretical studies of tropical cyclones
• Event reports, compelling images, and topic review reports of tropical cyclones
• Impacts, risk assessments, and risk management techniques related to tropical cyclones