Rachel Demers, Ryan S O'Connor, Audrey Le Pogam, Kevin G Young, Dominique Berteaux, Andrew Tam, François Vézina
{"title":"生于寒冷:幼年和成年雪鹬在繁殖地和越冬地的热交换和维护成本对比。","authors":"Rachel Demers, Ryan S O'Connor, Audrey Le Pogam, Kevin G Young, Dominique Berteaux, Andrew Tam, François Vézina","doi":"10.1007/s00360-023-01502-8","DOIUrl":null,"url":null,"abstract":"<p><p>Several species of passerines leave their nest with unfinished feather growth, resulting in lower feather insulation and increased thermoregulatory demands compared to adults. However, feather insulation is essential for avian species breeding at northern latitudes, where cold conditions or even snowstorms can occur during the breeding season. In altricial arctic species, increased heat loss caused by poor feather insulation during growth could be counter-adaptative as it creates additional energy demands for thermoregulation. Using flow-through respirometry, we compared resting metabolic rate at thermoneutrality (RMRt), summit metabolic rate (M<sub>sum</sub>) and heat loss (conductance) in adult and juvenile snow buntings on their summer and winter grounds. In summer, when buntings are in the Arctic, juveniles had a 12% higher RMRt, likely due to unfinished growth, and lost 14% more heat to the environment than adults. This pattern may result from juveniles fledging early to avoid predation at the cost of lower feather insulation. Surprisingly, an opposite pattern was observed at lower latitudes on their wintering grounds. Although they showed no difference in RMRt and M<sub>sum</sub>, adults were losing 12% more heat than juveniles. We suggest that this difference is due to poorer insulative property of plumage in adults stemming from energetic and time constraints encountered during their post-breeding molt. High plumage insulation in first-winter juvenile buntings could be adaptive to reduce thermoregulatory demands and maximize survival in the first winter of life, while adults could use behavioral strategies to compensate for their greater rate of heat loss.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"557-568"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Born in the cold: contrasted thermal exchanges and maintenance costs in juvenile and adult snow buntings on their breeding and wintering grounds.\",\"authors\":\"Rachel Demers, Ryan S O'Connor, Audrey Le Pogam, Kevin G Young, Dominique Berteaux, Andrew Tam, François Vézina\",\"doi\":\"10.1007/s00360-023-01502-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several species of passerines leave their nest with unfinished feather growth, resulting in lower feather insulation and increased thermoregulatory demands compared to adults. However, feather insulation is essential for avian species breeding at northern latitudes, where cold conditions or even snowstorms can occur during the breeding season. In altricial arctic species, increased heat loss caused by poor feather insulation during growth could be counter-adaptative as it creates additional energy demands for thermoregulation. Using flow-through respirometry, we compared resting metabolic rate at thermoneutrality (RMRt), summit metabolic rate (M<sub>sum</sub>) and heat loss (conductance) in adult and juvenile snow buntings on their summer and winter grounds. In summer, when buntings are in the Arctic, juveniles had a 12% higher RMRt, likely due to unfinished growth, and lost 14% more heat to the environment than adults. This pattern may result from juveniles fledging early to avoid predation at the cost of lower feather insulation. Surprisingly, an opposite pattern was observed at lower latitudes on their wintering grounds. Although they showed no difference in RMRt and M<sub>sum</sub>, adults were losing 12% more heat than juveniles. We suggest that this difference is due to poorer insulative property of plumage in adults stemming from energetic and time constraints encountered during their post-breeding molt. High plumage insulation in first-winter juvenile buntings could be adaptive to reduce thermoregulatory demands and maximize survival in the first winter of life, while adults could use behavioral strategies to compensate for their greater rate of heat loss.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\" \",\"pages\":\"557-568\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-023-01502-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-023-01502-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/29 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Born in the cold: contrasted thermal exchanges and maintenance costs in juvenile and adult snow buntings on their breeding and wintering grounds.
Several species of passerines leave their nest with unfinished feather growth, resulting in lower feather insulation and increased thermoregulatory demands compared to adults. However, feather insulation is essential for avian species breeding at northern latitudes, where cold conditions or even snowstorms can occur during the breeding season. In altricial arctic species, increased heat loss caused by poor feather insulation during growth could be counter-adaptative as it creates additional energy demands for thermoregulation. Using flow-through respirometry, we compared resting metabolic rate at thermoneutrality (RMRt), summit metabolic rate (Msum) and heat loss (conductance) in adult and juvenile snow buntings on their summer and winter grounds. In summer, when buntings are in the Arctic, juveniles had a 12% higher RMRt, likely due to unfinished growth, and lost 14% more heat to the environment than adults. This pattern may result from juveniles fledging early to avoid predation at the cost of lower feather insulation. Surprisingly, an opposite pattern was observed at lower latitudes on their wintering grounds. Although they showed no difference in RMRt and Msum, adults were losing 12% more heat than juveniles. We suggest that this difference is due to poorer insulative property of plumage in adults stemming from energetic and time constraints encountered during their post-breeding molt. High plumage insulation in first-winter juvenile buntings could be adaptive to reduce thermoregulatory demands and maximize survival in the first winter of life, while adults could use behavioral strategies to compensate for their greater rate of heat loss.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.