Peter Siema Musunzaji, Bryson A Ndenga, Suleiman Mzee, Laila U Abubakar, Uriel D Kitron, Angelle D Labeaud, Francis Maluki Mutuku
{"title":"肯尼亚夸莱县 Msambweni 的埃及伊蚊产卵偏好。","authors":"Peter Siema Musunzaji, Bryson A Ndenga, Suleiman Mzee, Laila U Abubakar, Uriel D Kitron, Angelle D Labeaud, Francis Maluki Mutuku","doi":"10.2987/22-7103","DOIUrl":null,"url":null,"abstract":"<p><p>Aedes aegypti is the primary vector of dengue fever virus (DENV) worldwide. Infusions made from organic materials have been shown to act as oviposition attractants for Ae. aegypti; however, studies on locally suitable infusion materials are lacking. The current study assessed the suitability of 4 locally available materials as oviposition infusions for use in surveillance and control of Ae. aegypti in Kwale County, Kenya. Oviposition infusion preferences were assessed in laboratory, semifield, and field conditions, using 4 infusions made from banana, grass, neem, and coconut. In addition, ovitrapping in wall, grass, bush, and banana microhabitats was done in 10 houses each in urban and rural coastal households to determine suitable oviposition microhabitats. Overall, the highest oviposition responses were observed for banana infusion, followed by neem and grass infusions, which were comparable. Coconut infusion resulted in the lowest oviposition response. Although female Ae. aegypti did not show preference for any microhabitat, the oviposition activity across all the microhabitats was highly enhanced by use of the organic infusions. Banana, neem, and grass infusions could be used to attract gravid mosquitoes to oviposition sites laced with insecticide to kill eggs. Additionally, banana plantings could be important targets for integrated vector control programs.</p>","PeriodicalId":17192,"journal":{"name":"Journal of the American Mosquito Control Association","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885850/pdf/","citationCount":"0","resultStr":"{\"title\":\"Oviposition Preferences of Aedes aegypti in Msambweni, Kwale County, Kenya.\",\"authors\":\"Peter Siema Musunzaji, Bryson A Ndenga, Suleiman Mzee, Laila U Abubakar, Uriel D Kitron, Angelle D Labeaud, Francis Maluki Mutuku\",\"doi\":\"10.2987/22-7103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aedes aegypti is the primary vector of dengue fever virus (DENV) worldwide. Infusions made from organic materials have been shown to act as oviposition attractants for Ae. aegypti; however, studies on locally suitable infusion materials are lacking. The current study assessed the suitability of 4 locally available materials as oviposition infusions for use in surveillance and control of Ae. aegypti in Kwale County, Kenya. Oviposition infusion preferences were assessed in laboratory, semifield, and field conditions, using 4 infusions made from banana, grass, neem, and coconut. In addition, ovitrapping in wall, grass, bush, and banana microhabitats was done in 10 houses each in urban and rural coastal households to determine suitable oviposition microhabitats. Overall, the highest oviposition responses were observed for banana infusion, followed by neem and grass infusions, which were comparable. Coconut infusion resulted in the lowest oviposition response. Although female Ae. aegypti did not show preference for any microhabitat, the oviposition activity across all the microhabitats was highly enhanced by use of the organic infusions. Banana, neem, and grass infusions could be used to attract gravid mosquitoes to oviposition sites laced with insecticide to kill eggs. Additionally, banana plantings could be important targets for integrated vector control programs.</p>\",\"PeriodicalId\":17192,\"journal\":{\"name\":\"Journal of the American Mosquito Control Association\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10885850/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Mosquito Control Association\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2987/22-7103\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Mosquito Control Association","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2987/22-7103","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Oviposition Preferences of Aedes aegypti in Msambweni, Kwale County, Kenya.
Aedes aegypti is the primary vector of dengue fever virus (DENV) worldwide. Infusions made from organic materials have been shown to act as oviposition attractants for Ae. aegypti; however, studies on locally suitable infusion materials are lacking. The current study assessed the suitability of 4 locally available materials as oviposition infusions for use in surveillance and control of Ae. aegypti in Kwale County, Kenya. Oviposition infusion preferences were assessed in laboratory, semifield, and field conditions, using 4 infusions made from banana, grass, neem, and coconut. In addition, ovitrapping in wall, grass, bush, and banana microhabitats was done in 10 houses each in urban and rural coastal households to determine suitable oviposition microhabitats. Overall, the highest oviposition responses were observed for banana infusion, followed by neem and grass infusions, which were comparable. Coconut infusion resulted in the lowest oviposition response. Although female Ae. aegypti did not show preference for any microhabitat, the oviposition activity across all the microhabitats was highly enhanced by use of the organic infusions. Banana, neem, and grass infusions could be used to attract gravid mosquitoes to oviposition sites laced with insecticide to kill eggs. Additionally, banana plantings could be important targets for integrated vector control programs.
期刊介绍:
The Journal of the American Mosquito Control Association (JAMCA) encourages the submission
of previously unpublished manuscripts contributing to the advancement of knowledge of
mosquitoes and other arthropod vectors. The Journal encourages submission of a wide range of
scientific studies that include all aspects of biology, ecology, systematics, and integrated pest
management. Manuscripts exceeding normal length (e. g., monographs) may be accepted for
publication as a supplement to the regular issue.