初始条件不确定的全身任务控制策略:在酒吧暴发者中的应用。

IF 0.9 4区 医学 Q4 NEUROSCIENCES
Motor Control Pub Date : 2023-07-01 DOI:10.1123/mc.2022-0119
Michael J Hiley, Maurice R Yeadon
{"title":"初始条件不确定的全身任务控制策略:在酒吧暴发者中的应用。","authors":"Michael J Hiley,&nbsp;Maurice R Yeadon","doi":"10.1123/mc.2022-0119","DOIUrl":null,"url":null,"abstract":"<p><p>The upstart is commonly used on bars in artistic gymnastics following a release and regrasp skill, where the gymnast will perform a flighted element before catching the bar. The variability of the flighted element leads to varying initial conditions prior to the upstart. The aim of the study was to understand how technique can be manipulated in order to ensure success at the task despite this variability. More specifically, the study aimed to quantify the ranges of initial angular velocity a gymnast could cope with in an upstart using (a) a fixed timing technique, (b) with one additional parameter to modify timings as a function of initial angular velocity, and (c) a further additional parameter to extend the range. Relationships were established, using computer simulation modeling, between the movement pattern parameters, which defined the technique, and the initial angular velocity of the upstart. A two-parameter relationship outperformed both the one-parameter relationship and the fixed timing solution in terms of the range of initial angular velocities the model could cope with. One of the two parameters governed the time by which the initiation of the shoulder extension should be reduced as a function of increased initial angular velocity, and the other parameter performed the same function for the remaining timing parameters at the hip and shoulder. The present study suggests that gymnasts, and, therefore, humans, may be able to modify movement patterns to cope with uncertain initial conditions using a relatively small number of parameters.</p>","PeriodicalId":49795,"journal":{"name":"Motor Control","volume":"27 3","pages":"616-630"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for Controlling a Whole-Body Task With Uncertain Initial Conditions: Application to the Upstart on Bars.\",\"authors\":\"Michael J Hiley,&nbsp;Maurice R Yeadon\",\"doi\":\"10.1123/mc.2022-0119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The upstart is commonly used on bars in artistic gymnastics following a release and regrasp skill, where the gymnast will perform a flighted element before catching the bar. The variability of the flighted element leads to varying initial conditions prior to the upstart. The aim of the study was to understand how technique can be manipulated in order to ensure success at the task despite this variability. More specifically, the study aimed to quantify the ranges of initial angular velocity a gymnast could cope with in an upstart using (a) a fixed timing technique, (b) with one additional parameter to modify timings as a function of initial angular velocity, and (c) a further additional parameter to extend the range. Relationships were established, using computer simulation modeling, between the movement pattern parameters, which defined the technique, and the initial angular velocity of the upstart. A two-parameter relationship outperformed both the one-parameter relationship and the fixed timing solution in terms of the range of initial angular velocities the model could cope with. One of the two parameters governed the time by which the initiation of the shoulder extension should be reduced as a function of increased initial angular velocity, and the other parameter performed the same function for the remaining timing parameters at the hip and shoulder. The present study suggests that gymnasts, and, therefore, humans, may be able to modify movement patterns to cope with uncertain initial conditions using a relatively small number of parameters.</p>\",\"PeriodicalId\":49795,\"journal\":{\"name\":\"Motor Control\",\"volume\":\"27 3\",\"pages\":\"616-630\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Motor Control\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1123/mc.2022-0119\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Motor Control","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1123/mc.2022-0119","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在艺术体操的高杠项目中,运动员在完成释放和再抓住动作后,通常会做一个腾空动作,然后再抓住高杠。飞行元素的可变性导致了在暴发之前不同的初始条件。这项研究的目的是了解如何操纵技术,以确保在这种可变性的情况下成功完成任务。更具体地说,该研究旨在量化一个体操运动员在暴发者中可以应对的初始角速度范围,使用(a)固定的计时技术,(b)使用一个额外的参数来修改计时作为初始角速度的函数,以及(c)进一步的额外参数来扩大范围。通过计算机仿真建模,建立了定义该技术的运动模式参数与暴发物的初始角速度之间的关系。在模型可处理的初始角速度范围方面,双参数关系优于单参数关系和固定定时解。其中一个参数决定了肩关节开始伸展的时间,作为初始角速度增加的函数,另一个参数对髋部和肩关节的剩余时间参数起同样的作用。目前的研究表明,体操运动员,因此,人类,可能能够修改运动模式,以应对不确定的初始条件,使用相对较少的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies for Controlling a Whole-Body Task With Uncertain Initial Conditions: Application to the Upstart on Bars.

The upstart is commonly used on bars in artistic gymnastics following a release and regrasp skill, where the gymnast will perform a flighted element before catching the bar. The variability of the flighted element leads to varying initial conditions prior to the upstart. The aim of the study was to understand how technique can be manipulated in order to ensure success at the task despite this variability. More specifically, the study aimed to quantify the ranges of initial angular velocity a gymnast could cope with in an upstart using (a) a fixed timing technique, (b) with one additional parameter to modify timings as a function of initial angular velocity, and (c) a further additional parameter to extend the range. Relationships were established, using computer simulation modeling, between the movement pattern parameters, which defined the technique, and the initial angular velocity of the upstart. A two-parameter relationship outperformed both the one-parameter relationship and the fixed timing solution in terms of the range of initial angular velocities the model could cope with. One of the two parameters governed the time by which the initiation of the shoulder extension should be reduced as a function of increased initial angular velocity, and the other parameter performed the same function for the remaining timing parameters at the hip and shoulder. The present study suggests that gymnasts, and, therefore, humans, may be able to modify movement patterns to cope with uncertain initial conditions using a relatively small number of parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Motor Control
Motor Control 医学-神经科学
CiteScore
1.80
自引率
9.10%
发文量
48
审稿时长
>12 weeks
期刊介绍: Motor Control (MC), a peer-reviewed journal, provides a multidisciplinary examination of human movement across the lifespan. To keep you abreast of current developments in the field of motor control, it offers timely coverage of important topics, including issues related to motor disorders. This international journal publishes many types of research papers, from clinical experimental to modeling and theoretical studies. These papers come from such varied disciplines as biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. Motor Control, the official journal of the International Society of Motor Control, is designed to provide a multidisciplinary forum for the exchange of scientific information on the control of human movement across the lifespan, including issues related to motor disorders. Motor Control encourages submission of papers from a variety of disciplines including, but not limited to, biomechanics, kinesiology, neurophysiology, neuroscience, psychology, physical medicine, and rehabilitation. This peer-reviewed journal publishes a wide variety of types of research papers including clinical experimental, modeling, and theoretical studies. To be considered for publication, papers should clearly demonstrate a contribution to the understanding of control of movement. In addition to publishing research papers, Motor Control publishes review articles, quick communications, commentaries, target articles, and book reviews. When warranted, an entire issue may be devoted to a specific topic within the area of motor control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信