主成分分析减少了多基因分数效应大小估计中的对撞机偏差。

IF 2.6 4区 医学 Q2 BEHAVIORAL SCIENCES
Behavior Genetics Pub Date : 2022-09-01 Epub Date: 2022-06-08 DOI:10.1007/s10519-022-10104-z
Nathaniel S Thomas, Peter Barr, Fazil Aliev, Mallory Stephenson, Sally I-Chun Kuo, Grace Chan, Danielle M Dick, Howard J Edenberg, Victor Hesselbrock, Chella Kamarajan, Samuel Kuperman, Jessica E Salvatore
{"title":"主成分分析减少了多基因分数效应大小估计中的对撞机偏差。","authors":"Nathaniel S Thomas, Peter Barr, Fazil Aliev, Mallory Stephenson, Sally I-Chun Kuo, Grace Chan, Danielle M Dick, Howard J Edenberg, Victor Hesselbrock, Chella Kamarajan, Samuel Kuperman, Jessica E Salvatore","doi":"10.1007/s10519-022-10104-z","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we test principal component analysis (PCA) of measured confounders as a method to reduce collider bias in polygenic association models. We present results from simulations and application of the method in the Collaborative Study of the Genetics of Alcoholism (COGA) sample with a polygenic score for alcohol problems, DSM-5 alcohol use disorder as the target phenotype, and two collider variables: tobacco use and educational attainment. Simulation results suggest that assumptions regarding the correlation structure and availability of measured confounders are complementary, such that meeting one assumption relaxes the other. Application of the method in COGA shows that PC covariates reduce collider bias when tobacco use is used as the collider variable. Application of this method may improve PRS effect size estimation in some cases by reducing the effect of collider bias, making efficient use of data resources that are available in many studies.</p>","PeriodicalId":8715,"journal":{"name":"Behavior Genetics","volume":"52 4-5","pages":"268-280"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103419/pdf/nihms-1884763.pdf","citationCount":"0","resultStr":"{\"title\":\"Principal Component Analysis Reduces Collider Bias in Polygenic Score Effect Size Estimation.\",\"authors\":\"Nathaniel S Thomas, Peter Barr, Fazil Aliev, Mallory Stephenson, Sally I-Chun Kuo, Grace Chan, Danielle M Dick, Howard J Edenberg, Victor Hesselbrock, Chella Kamarajan, Samuel Kuperman, Jessica E Salvatore\",\"doi\":\"10.1007/s10519-022-10104-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we test principal component analysis (PCA) of measured confounders as a method to reduce collider bias in polygenic association models. We present results from simulations and application of the method in the Collaborative Study of the Genetics of Alcoholism (COGA) sample with a polygenic score for alcohol problems, DSM-5 alcohol use disorder as the target phenotype, and two collider variables: tobacco use and educational attainment. Simulation results suggest that assumptions regarding the correlation structure and availability of measured confounders are complementary, such that meeting one assumption relaxes the other. Application of the method in COGA shows that PC covariates reduce collider bias when tobacco use is used as the collider variable. Application of this method may improve PRS effect size estimation in some cases by reducing the effect of collider bias, making efficient use of data resources that are available in many studies.</p>\",\"PeriodicalId\":8715,\"journal\":{\"name\":\"Behavior Genetics\",\"volume\":\"52 4-5\",\"pages\":\"268-280\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10103419/pdf/nihms-1884763.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavior Genetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10519-022-10104-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/6/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10519-022-10104-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们测试了测量混杂因素的主成分分析(PCA)作为一种减少多基因关联模型中碰撞偏差的方法。我们介绍了该方法在酒精中毒遗传学合作研究(COGA)样本中的模拟和应用结果,该样本具有酒精问题的多基因评分、DSM-5 酒精使用障碍作为目标表型,以及两个碰撞变量:烟草使用和教育程度。模拟结果表明,相关结构假设和测量混杂因素的可用性是相辅相成的,因此满足一个假设就能放宽另一个假设。该方法在 COGA 中的应用表明,当将烟草使用作为对撞变量时,PC 协变量可减少对撞偏差。在某些情况下,应用这种方法可以通过减少碰撞偏差的影响来改善 PRS效应大小的估计,从而有效利用许多研究中可用的数据资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Principal Component Analysis Reduces Collider Bias in Polygenic Score Effect Size Estimation.

Principal Component Analysis Reduces Collider Bias in Polygenic Score Effect Size Estimation.

In this study, we test principal component analysis (PCA) of measured confounders as a method to reduce collider bias in polygenic association models. We present results from simulations and application of the method in the Collaborative Study of the Genetics of Alcoholism (COGA) sample with a polygenic score for alcohol problems, DSM-5 alcohol use disorder as the target phenotype, and two collider variables: tobacco use and educational attainment. Simulation results suggest that assumptions regarding the correlation structure and availability of measured confounders are complementary, such that meeting one assumption relaxes the other. Application of the method in COGA shows that PC covariates reduce collider bias when tobacco use is used as the collider variable. Application of this method may improve PRS effect size estimation in some cases by reducing the effect of collider bias, making efficient use of data resources that are available in many studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavior Genetics
Behavior Genetics 生物-行为科学
CiteScore
4.90
自引率
7.70%
发文量
30
审稿时长
6-12 weeks
期刊介绍: Behavior Genetics - the leading journal concerned with the genetic analysis of complex traits - is published in cooperation with the Behavior Genetics Association. This timely journal disseminates the most current original research on the inheritance and evolution of behavioral characteristics in man and other species. Contributions from eminent international researchers focus on both the application of various genetic perspectives to the study of behavioral characteristics and the influence of behavioral differences on the genetic structure of populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信