不完全剩余系统上的多项式同余,模k

J.H.H. Chalk
{"title":"不完全剩余系统上的多项式同余,模k","authors":"J.H.H. Chalk","doi":"10.1016/S1385-7258(89)80016-2","DOIUrl":null,"url":null,"abstract":"<div><p>This is a sequel to the previous article (Proceedings Kon. Ned. Akad. van Wetensch., <strong>A 83</strong> (4), (1980), 367–374, see MR, 82d: 10053, 10G10.) on the Mordell and Tietäväinen inequalities for the distribution of zeros of polynomial congruences in incomplete residue systems <em>modulo k</em>. Here the emphasis is on composite k and applies to a general class of polynomials satisfying mild conditions of non-degeneracy for each prime <em>p</em>∣<em>k</em>.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 1","pages":"Pages 49-62"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80016-2","citationCount":"12","resultStr":"{\"title\":\"Polynomial congruences over incomplete residue systems, modulo k\",\"authors\":\"J.H.H. Chalk\",\"doi\":\"10.1016/S1385-7258(89)80016-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This is a sequel to the previous article (Proceedings Kon. Ned. Akad. van Wetensch., <strong>A 83</strong> (4), (1980), 367–374, see MR, 82d: 10053, 10G10.) on the Mordell and Tietäväinen inequalities for the distribution of zeros of polynomial congruences in incomplete residue systems <em>modulo k</em>. Here the emphasis is on composite k and applies to a general class of polynomials satisfying mild conditions of non-degeneracy for each prime <em>p</em>∣<em>k</em>.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"92 1\",\"pages\":\"Pages 49-62\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80016-2\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725889800162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725889800162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

这是上一篇文章的续集。内德。Akad。范Wetensch。(A 83(4),(1980), 367-374,见MR, 82d: 10053, 10G10.)关于模k的不完全剩余系统中多项式同余的零分布的Mordell不等式和Tietäväinen不等式。这里的重点是复合k,并适用于满足每个素数p∣k的非退化的温和条件的一般多项式类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial congruences over incomplete residue systems, modulo k

This is a sequel to the previous article (Proceedings Kon. Ned. Akad. van Wetensch., A 83 (4), (1980), 367–374, see MR, 82d: 10053, 10G10.) on the Mordell and Tietäväinen inequalities for the distribution of zeros of polynomial congruences in incomplete residue systems modulo k. Here the emphasis is on composite k and applies to a general class of polynomials satisfying mild conditions of non-degeneracy for each prime pk.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信