Mai A Zahra, Eman S Kamha, Hanan K Abdelaziz, Howaida A Nounou, Hany M El Deeb
{"title":"广泛性癫痫患者血清MicroRNA-153和-199a的异常表达及其与耐药性的关系","authors":"Mai A Zahra, Eman S Kamha, Hanan K Abdelaziz, Howaida A Nounou, Hany M El Deeb","doi":"10.1177/09727531221077667","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epilepsy is one of the common neurological disorders affecting approximately 50 million people worldwide. Despite the recent introduction of new antiepileptic drugs, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early recognition of patients with drug-resistant epilepsy may help direct these patients to appropriate nonpharmacological treatment.</p><p><strong>Purpose: </strong>The possible use of serum microRNAs (miRNAs) as noninvasive biomarkers has been explored in various brain diseases, including epilepsy. In this study, we are aiming at analyzing the expression levels of circulating miRNA-153 and miRNA-199a in patients with generalized epilepsy and their correlation with drug resistance.</p><p><strong>Methods: </strong>Our study comprised 40 patients with generalized epilepsy and 20 healthy controls. 22 patients were drug-resistant and 18 patients were drug-responsive. The expression levels of miRNA-153 and -199a in serum were analyzed using quantitative real-time polymerase chain reaction. Data analysis was done by IBM SPSS Statistics 20.0.</p><p><strong>Results: </strong>The expression of miRNA-153 and -199a in serum was significantly downregulated in patients with generalized epilepsy compared with that of the healthy control (<i>P</i> < .001). Combined expression level of serum miRNA-153 and -199a had a sensitivity of 85% and a specificity of 90% in the diagnosis of generalized epilepsy. Furthermore, the expression levels of miRNA-153 and -199a were significantly decreased in drug-resistant patients compared to the drug-responsive group, and the combination of both markers gave the best results in differentiating between the two groups.</p><p><strong>Conclusion: </strong>We suggest that serum miRNAs-153 and -199a expression levels could be potential noninvasive biomarkers supporting the diagnosis of generalized epilepsy. Moreover, they could be used for the early detection of refractory generalized epilepsy.</p>","PeriodicalId":7921,"journal":{"name":"Annals of Neurosciences","volume":"29 4","pages":"203-208"},"PeriodicalIF":1.8000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/cf/10.1177_09727531221077667.PMC10101161.pdf","citationCount":"2","resultStr":"{\"title\":\"Aberrant Expression of Serum MicroRNA-153 and -199a in Generalized Epilepsy and its Correlation with Drug Resistance.\",\"authors\":\"Mai A Zahra, Eman S Kamha, Hanan K Abdelaziz, Howaida A Nounou, Hany M El Deeb\",\"doi\":\"10.1177/09727531221077667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Epilepsy is one of the common neurological disorders affecting approximately 50 million people worldwide. Despite the recent introduction of new antiepileptic drugs, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early recognition of patients with drug-resistant epilepsy may help direct these patients to appropriate nonpharmacological treatment.</p><p><strong>Purpose: </strong>The possible use of serum microRNAs (miRNAs) as noninvasive biomarkers has been explored in various brain diseases, including epilepsy. In this study, we are aiming at analyzing the expression levels of circulating miRNA-153 and miRNA-199a in patients with generalized epilepsy and their correlation with drug resistance.</p><p><strong>Methods: </strong>Our study comprised 40 patients with generalized epilepsy and 20 healthy controls. 22 patients were drug-resistant and 18 patients were drug-responsive. The expression levels of miRNA-153 and -199a in serum were analyzed using quantitative real-time polymerase chain reaction. Data analysis was done by IBM SPSS Statistics 20.0.</p><p><strong>Results: </strong>The expression of miRNA-153 and -199a in serum was significantly downregulated in patients with generalized epilepsy compared with that of the healthy control (<i>P</i> < .001). Combined expression level of serum miRNA-153 and -199a had a sensitivity of 85% and a specificity of 90% in the diagnosis of generalized epilepsy. Furthermore, the expression levels of miRNA-153 and -199a were significantly decreased in drug-resistant patients compared to the drug-responsive group, and the combination of both markers gave the best results in differentiating between the two groups.</p><p><strong>Conclusion: </strong>We suggest that serum miRNAs-153 and -199a expression levels could be potential noninvasive biomarkers supporting the diagnosis of generalized epilepsy. Moreover, they could be used for the early detection of refractory generalized epilepsy.</p>\",\"PeriodicalId\":7921,\"journal\":{\"name\":\"Annals of Neurosciences\",\"volume\":\"29 4\",\"pages\":\"203-208\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/07/cf/10.1177_09727531221077667.PMC10101161.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Neurosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/09727531221077667\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Neurosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09727531221077667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Aberrant Expression of Serum MicroRNA-153 and -199a in Generalized Epilepsy and its Correlation with Drug Resistance.
Background: Epilepsy is one of the common neurological disorders affecting approximately 50 million people worldwide. Despite the recent introduction of new antiepileptic drugs, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Early recognition of patients with drug-resistant epilepsy may help direct these patients to appropriate nonpharmacological treatment.
Purpose: The possible use of serum microRNAs (miRNAs) as noninvasive biomarkers has been explored in various brain diseases, including epilepsy. In this study, we are aiming at analyzing the expression levels of circulating miRNA-153 and miRNA-199a in patients with generalized epilepsy and their correlation with drug resistance.
Methods: Our study comprised 40 patients with generalized epilepsy and 20 healthy controls. 22 patients were drug-resistant and 18 patients were drug-responsive. The expression levels of miRNA-153 and -199a in serum were analyzed using quantitative real-time polymerase chain reaction. Data analysis was done by IBM SPSS Statistics 20.0.
Results: The expression of miRNA-153 and -199a in serum was significantly downregulated in patients with generalized epilepsy compared with that of the healthy control (P < .001). Combined expression level of serum miRNA-153 and -199a had a sensitivity of 85% and a specificity of 90% in the diagnosis of generalized epilepsy. Furthermore, the expression levels of miRNA-153 and -199a were significantly decreased in drug-resistant patients compared to the drug-responsive group, and the combination of both markers gave the best results in differentiating between the two groups.
Conclusion: We suggest that serum miRNAs-153 and -199a expression levels could be potential noninvasive biomarkers supporting the diagnosis of generalized epilepsy. Moreover, they could be used for the early detection of refractory generalized epilepsy.