巨噬细胞中的功能性钾通道。

IF 2.3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qiaoyan Man, Zhe Gao, Kuihao Chen
{"title":"巨噬细胞中的功能性钾通道。","authors":"Qiaoyan Man,&nbsp;Zhe Gao,&nbsp;Kuihao Chen","doi":"10.1007/s00232-022-00276-4","DOIUrl":null,"url":null,"abstract":"<p><p>Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K<sup>+</sup> channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K<sup>+</sup> channels on macrophages. Here, we will review the four types of K<sup>+</sup> channels that are expressed in macrophages: voltage-gated K<sup>+</sup> channel, calcium-activated K<sup>+</sup> channel, inwardly rectifying K<sup>+</sup> channel and two-pore domain K<sup>+</sup> channel.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":"256 2","pages":"175-187"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Functional Potassium Channels in Macrophages.\",\"authors\":\"Qiaoyan Man,&nbsp;Zhe Gao,&nbsp;Kuihao Chen\",\"doi\":\"10.1007/s00232-022-00276-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K<sup>+</sup> channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K<sup>+</sup> channels on macrophages. Here, we will review the four types of K<sup>+</sup> channels that are expressed in macrophages: voltage-gated K<sup>+</sup> channel, calcium-activated K<sup>+</sup> channel, inwardly rectifying K<sup>+</sup> channel and two-pore domain K<sup>+</sup> channel.</p>\",\"PeriodicalId\":50129,\"journal\":{\"name\":\"Journal of Membrane Biology\",\"volume\":\"256 2\",\"pages\":\"175-187\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-022-00276-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-022-00276-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

巨噬细胞是先天免疫的主要组成部分,是机体重要的保护屏障。巨噬细胞存在于人体的所有器官和组织中,其主要功能包括免疫监视、细菌杀伤、组织重塑和修复以及清除细胞碎片。此外,巨噬细胞可以向T细胞呈递抗原,并通过释放细胞因子促进炎症反应。巨噬细胞因其在多种生理过程中的重要作用而备受关注。近年来,对巨噬细胞活化机制的研究不断取得新进展。离子通道是一类多聚体跨膜蛋白,允许特定离子通过细胞膜。细胞膜内外离子通道中离子的流动是维持细胞形态和细胞内信号转导所必需的。检测了巨噬细胞中各种离子通道的表达。离子通道在巨噬细胞活化中的作用逐渐受到关注。K+通道是免疫系统中研究最多的通道。然而,对于巨噬细胞中K+通道的研究,目前发表的文献很少。在这里,我们将回顾巨噬细胞中表达的四种类型的K+通道:电压门控K+通道、钙激活K+通道、内纠偏K+通道和双孔域K+通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Functional Potassium Channels in Macrophages.

Functional Potassium Channels in Macrophages.

Macrophages are the predominant component of innate immunity, which is an important protective barrier of our body. Macrophages are present in all organs and tissues of the body, their main functions include immune surveillance, bacterial killing, tissue remodeling and repair, and clearance of cell debris. In addition, macrophages can present antigens to T cells and facilitate inflammatory response by releasing cytokines. Macrophages are of high concern due to their crucial roles in multiple physiological processes. In recent years, new advances are emerging after great efforts have been made to explore the mechanisms of macrophage activation. Ion channel is a class of multimeric transmembrane protein that allows specific ions to go through cell membrane. The flow of ions through ion channel between inside and outside of cell membrane is required for maintaining cell morphology and intracellular signal transduction. Expressions of various ion channels in macrophages have been detected. The roles of ion channels in macrophage activation are gradually caught attention. K+ channels are the most studied channels in immune system. However, very few of published papers reviewed the studies of K+ channels on macrophages. Here, we will review the four types of K+ channels that are expressed in macrophages: voltage-gated K+ channel, calcium-activated K+ channel, inwardly rectifying K+ channel and two-pore domain K+ channel.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Biology
Journal of Membrane Biology 生物-生化与分子生物学
CiteScore
4.80
自引率
4.20%
发文量
63
审稿时长
6-12 weeks
期刊介绍: The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function. Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations. While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信