Q Wu, Z Li, Y Zhang, K Luo, X Xu, J Li, X Peng, X Zhou
{"title":"环二磷酸腺苷拯救牙龈卟啉单胞菌加重动脉粥样硬化。","authors":"Q Wu, Z Li, Y Zhang, K Luo, X Xu, J Li, X Peng, X Zhou","doi":"10.1177/00220345231162344","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence demonstrates the relationship between periodontitis and atherosclerotic cardiovascular diseases. The periodontal pathogen <i>Porphyromonas gingivalis</i> (Pg) has been shown to contribute to the progression of atherosclerosis. Cyclic diadenylate monophosphate (c-di-AMP) has been widely studied as an immune adjuvant for tumor immunotherapy, given its ability to activate the stimulator of interferon genes (STING) and regulate trained immunity. This study sought to elucidate the role of c-di-AMP in Pg-associated atherosclerosis. Periodontitis and atherosclerosis mouse models were established by ligature application around maxillary second molars and feeding <i>ApoE</i> knockout mice with a high-fat diet. We found that periodontitis and atherosclerosis were more severe in mice exposed to Pg than mice that underwent ligature placement only, while prophylactic treatment with c-di-AMP activated trained immunity and elicited significant alleviation of alveolar bone resorption, as well as reduced blood lipid levels and atherosclerotic plaque accumulation. After 3 mo of intervention, c-di-AMP limited the elevation of cytokines interleukin (IL)-6, IL-1β, tumor necrosis factor α, and interferon β; extracellular matrix remodeling enzymes MMP-2 and MMP-9; and adhesion molecules ICAM-1 and VCAM-1 gene expression. The mechanism underlying Pg-aggravated atherosclerosis may be attributed to changes in microbiota composition in oral and aortic plaques and excess inflammatory response, whereas c-di-AMP could prevent the effects of Pg infection due to its potential ability to activate trained immunity and regulate microecological balance. Our findings suggest a positive role of c-di-AMP in alleviating Pg-aggravated atherosclerosis by regulating the immune response and influencing the local microenvironment.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cyclic di-AMP Rescues <i>Porphyromonas gingivalis</i>-Aggravated Atherosclerosis.\",\"authors\":\"Q Wu, Z Li, Y Zhang, K Luo, X Xu, J Li, X Peng, X Zhou\",\"doi\":\"10.1177/00220345231162344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growing evidence demonstrates the relationship between periodontitis and atherosclerotic cardiovascular diseases. The periodontal pathogen <i>Porphyromonas gingivalis</i> (Pg) has been shown to contribute to the progression of atherosclerosis. Cyclic diadenylate monophosphate (c-di-AMP) has been widely studied as an immune adjuvant for tumor immunotherapy, given its ability to activate the stimulator of interferon genes (STING) and regulate trained immunity. This study sought to elucidate the role of c-di-AMP in Pg-associated atherosclerosis. Periodontitis and atherosclerosis mouse models were established by ligature application around maxillary second molars and feeding <i>ApoE</i> knockout mice with a high-fat diet. We found that periodontitis and atherosclerosis were more severe in mice exposed to Pg than mice that underwent ligature placement only, while prophylactic treatment with c-di-AMP activated trained immunity and elicited significant alleviation of alveolar bone resorption, as well as reduced blood lipid levels and atherosclerotic plaque accumulation. After 3 mo of intervention, c-di-AMP limited the elevation of cytokines interleukin (IL)-6, IL-1β, tumor necrosis factor α, and interferon β; extracellular matrix remodeling enzymes MMP-2 and MMP-9; and adhesion molecules ICAM-1 and VCAM-1 gene expression. The mechanism underlying Pg-aggravated atherosclerosis may be attributed to changes in microbiota composition in oral and aortic plaques and excess inflammatory response, whereas c-di-AMP could prevent the effects of Pg infection due to its potential ability to activate trained immunity and regulate microecological balance. Our findings suggest a positive role of c-di-AMP in alleviating Pg-aggravated atherosclerosis by regulating the immune response and influencing the local microenvironment.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/00220345231162344\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/00220345231162344","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Growing evidence demonstrates the relationship between periodontitis and atherosclerotic cardiovascular diseases. The periodontal pathogen Porphyromonas gingivalis (Pg) has been shown to contribute to the progression of atherosclerosis. Cyclic diadenylate monophosphate (c-di-AMP) has been widely studied as an immune adjuvant for tumor immunotherapy, given its ability to activate the stimulator of interferon genes (STING) and regulate trained immunity. This study sought to elucidate the role of c-di-AMP in Pg-associated atherosclerosis. Periodontitis and atherosclerosis mouse models were established by ligature application around maxillary second molars and feeding ApoE knockout mice with a high-fat diet. We found that periodontitis and atherosclerosis were more severe in mice exposed to Pg than mice that underwent ligature placement only, while prophylactic treatment with c-di-AMP activated trained immunity and elicited significant alleviation of alveolar bone resorption, as well as reduced blood lipid levels and atherosclerotic plaque accumulation. After 3 mo of intervention, c-di-AMP limited the elevation of cytokines interleukin (IL)-6, IL-1β, tumor necrosis factor α, and interferon β; extracellular matrix remodeling enzymes MMP-2 and MMP-9; and adhesion molecules ICAM-1 and VCAM-1 gene expression. The mechanism underlying Pg-aggravated atherosclerosis may be attributed to changes in microbiota composition in oral and aortic plaques and excess inflammatory response, whereas c-di-AMP could prevent the effects of Pg infection due to its potential ability to activate trained immunity and regulate microecological balance. Our findings suggest a positive role of c-di-AMP in alleviating Pg-aggravated atherosclerosis by regulating the immune response and influencing the local microenvironment.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.