石榴石型Mg3Fe2Si3O12的原子尺度研究:缺陷化学、扩散和掺杂性能

IF 5.4 Q2 CHEMISTRY, PHYSICAL
Navaratnarajah Kuganathan , Alexander Chroneos
{"title":"石榴石型Mg3Fe2Si3O12的原子尺度研究:缺陷化学、扩散和掺杂性能","authors":"Navaratnarajah Kuganathan ,&nbsp;Alexander Chroneos","doi":"10.1016/j.powera.2020.100016","DOIUrl":null,"url":null,"abstract":"<div><p>Materials with low cost, environmentally benign, high structural stability and high Mg content are of considerable interest for the construction of rechargeable Mg-ion batteries. In the present study, atomistic simulations are used to provide insights into defect and diffusion properties of garnet type Mg<sub>3</sub>Fe<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>. Calculations reveal that the Mg–Fe anti-site defect cluster (0.44 eV/defect) is the lowest energy intrinsic defect process. Three dimensional Mg-ion migration pathway with the activation energy of 2.19 eV suggests that Mg-ion diffusion in this material is slow. Favourable isovalent dopants are found to be Mn<sup>2+</sup>, Ga<sup>3+</sup> and Ge<sup>4+</sup> on the Mg, Fe and Si sites respectively. While the formation of Mg interstitials required for the capacity is facilitated by Al doping on the Si site, Mg vacancies needed for the vacancy assisted Mg-ion diffusion are enhanced by Ge doping on the Fe site. The electronic structures of favourable dopants are calculated and discussed using density functional theory.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.powera.2020.100016","citationCount":"2","resultStr":"{\"title\":\"Atomic-scale studies of garnet-type Mg3Fe2Si3O12: Defect chemistry, diffusion and dopant properties\",\"authors\":\"Navaratnarajah Kuganathan ,&nbsp;Alexander Chroneos\",\"doi\":\"10.1016/j.powera.2020.100016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Materials with low cost, environmentally benign, high structural stability and high Mg content are of considerable interest for the construction of rechargeable Mg-ion batteries. In the present study, atomistic simulations are used to provide insights into defect and diffusion properties of garnet type Mg<sub>3</sub>Fe<sub>2</sub>Si<sub>3</sub>O<sub>12</sub>. Calculations reveal that the Mg–Fe anti-site defect cluster (0.44 eV/defect) is the lowest energy intrinsic defect process. Three dimensional Mg-ion migration pathway with the activation energy of 2.19 eV suggests that Mg-ion diffusion in this material is slow. Favourable isovalent dopants are found to be Mn<sup>2+</sup>, Ga<sup>3+</sup> and Ge<sup>4+</sup> on the Mg, Fe and Si sites respectively. While the formation of Mg interstitials required for the capacity is facilitated by Al doping on the Si site, Mg vacancies needed for the vacancy assisted Mg-ion diffusion are enhanced by Ge doping on the Fe site. The electronic structures of favourable dopants are calculated and discussed using density functional theory.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.powera.2020.100016\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248520300160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248520300160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

摘要

低成本、环保、高结构稳定性和高镁含量的材料是构建可充电镁离子电池的重要研究方向。在本研究中,原子模拟被用于提供对石榴石型Mg3Fe2Si3O12的缺陷和扩散特性的见解。计算结果表明,Mg-Fe反位缺陷团簇(0.44 eV/defect)是能量最低的本构缺陷过程。三维mg离子迁移路径的活化能为2.19 eV,表明mg离子在该材料中的扩散较慢。在Mg、Fe和Si位点上,有利的同价掺杂剂分别是Mn2+、Ga3+和Ge4+。Al在Si位点上的掺杂促进了容量所需的Mg空位的形成,而Ge在Fe位点上的掺杂则增强了空位辅助Mg离子扩散所需的Mg空位。利用密度泛函理论对有利掺杂剂的电子结构进行了计算和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic-scale studies of garnet-type Mg3Fe2Si3O12: Defect chemistry, diffusion and dopant properties

Materials with low cost, environmentally benign, high structural stability and high Mg content are of considerable interest for the construction of rechargeable Mg-ion batteries. In the present study, atomistic simulations are used to provide insights into defect and diffusion properties of garnet type Mg3Fe2Si3O12. Calculations reveal that the Mg–Fe anti-site defect cluster (0.44 eV/defect) is the lowest energy intrinsic defect process. Three dimensional Mg-ion migration pathway with the activation energy of 2.19 eV suggests that Mg-ion diffusion in this material is slow. Favourable isovalent dopants are found to be Mn2+, Ga3+ and Ge4+ on the Mg, Fe and Si sites respectively. While the formation of Mg interstitials required for the capacity is facilitated by Al doping on the Si site, Mg vacancies needed for the vacancy assisted Mg-ion diffusion are enhanced by Ge doping on the Fe site. The electronic structures of favourable dopants are calculated and discussed using density functional theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
18
审稿时长
64 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信