James N Kezos, Thomas T Barter, Mark A Phillips, Larry G Cabral, Zachary S Greenspan, Kenneth R Arnold, Grigor Azatian, José Buenrostro, Punjot S Bhangoo, Annie Khong, Gabriel T Reyes, Adil Rahman, Laura A Humphrey, Timothy J Bradley, Laurence D Mueller, Michael R Rose
{"title":"利用机器学习和果蝇实验进化建立从基因组到生理学的桥梁。","authors":"James N Kezos, Thomas T Barter, Mark A Phillips, Larry G Cabral, Zachary S Greenspan, Kenneth R Arnold, Grigor Azatian, José Buenrostro, Punjot S Bhangoo, Annie Khong, Gabriel T Reyes, Adil Rahman, Laura A Humphrey, Timothy J Bradley, Laurence D Mueller, Michael R Rose","doi":"10.1086/724827","DOIUrl":null,"url":null,"abstract":"<p><p><i>Drosophila</i> experimental evolution, with its well-defined selection protocols, has long supplied useful genetic material for the analysis of functional physiology. While there is a long tradition of interpreting the effects of large-effect mutants physiologically, identifying and interpreting gene-to-phenotype relationships has been challenging in the genomic era, with many labs not resolving how physiological traits are affected by multiple genes throughout the genome. <i>Drosophila</i> experimental evolution has demonstrated that multiple phenotypes change because of the evolution of many loci across the genome, creating the scientific challenge of sifting out differentiated but noncausal loci for individual characters. The fused lasso additive model method allows us to infer some of the differentiated loci that have relatively greater causal effects on the differentiation of specific phenotypes. The experimental material that we use in the present study comes from 50 populations that have been selected for different life histories and levels of stress resistance. Differentiation of cardiac robustness, starvation resistance, desiccation resistance, lipid content, glycogen content, water content, and body masses was assayed among 40-50 of these experimentally evolved populations. Through the fused lasso additive model, we combined physiological analyses from eight parameters with whole-body pooled-seq genomic data to identify potentially causally linked genomic regions. We have identified approximately 2,176 significantly differentiated 50-kb genomic windows among our 50 populations, with 142 of those identified genomic regions that are highly likely to have a causal effect connecting specific genome sites to specific physiological characters.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Bridges from Genome to Physiology Using Machine Learning and <i>Drosophila</i> Experimental Evolution.\",\"authors\":\"James N Kezos, Thomas T Barter, Mark A Phillips, Larry G Cabral, Zachary S Greenspan, Kenneth R Arnold, Grigor Azatian, José Buenrostro, Punjot S Bhangoo, Annie Khong, Gabriel T Reyes, Adil Rahman, Laura A Humphrey, Timothy J Bradley, Laurence D Mueller, Michael R Rose\",\"doi\":\"10.1086/724827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Drosophila</i> experimental evolution, with its well-defined selection protocols, has long supplied useful genetic material for the analysis of functional physiology. While there is a long tradition of interpreting the effects of large-effect mutants physiologically, identifying and interpreting gene-to-phenotype relationships has been challenging in the genomic era, with many labs not resolving how physiological traits are affected by multiple genes throughout the genome. <i>Drosophila</i> experimental evolution has demonstrated that multiple phenotypes change because of the evolution of many loci across the genome, creating the scientific challenge of sifting out differentiated but noncausal loci for individual characters. The fused lasso additive model method allows us to infer some of the differentiated loci that have relatively greater causal effects on the differentiation of specific phenotypes. The experimental material that we use in the present study comes from 50 populations that have been selected for different life histories and levels of stress resistance. Differentiation of cardiac robustness, starvation resistance, desiccation resistance, lipid content, glycogen content, water content, and body masses was assayed among 40-50 of these experimentally evolved populations. Through the fused lasso additive model, we combined physiological analyses from eight parameters with whole-body pooled-seq genomic data to identify potentially causally linked genomic regions. We have identified approximately 2,176 significantly differentiated 50-kb genomic windows among our 50 populations, with 142 of those identified genomic regions that are highly likely to have a causal effect connecting specific genome sites to specific physiological characters.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/724827\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/724827","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Building Bridges from Genome to Physiology Using Machine Learning and Drosophila Experimental Evolution.
Drosophila experimental evolution, with its well-defined selection protocols, has long supplied useful genetic material for the analysis of functional physiology. While there is a long tradition of interpreting the effects of large-effect mutants physiologically, identifying and interpreting gene-to-phenotype relationships has been challenging in the genomic era, with many labs not resolving how physiological traits are affected by multiple genes throughout the genome. Drosophila experimental evolution has demonstrated that multiple phenotypes change because of the evolution of many loci across the genome, creating the scientific challenge of sifting out differentiated but noncausal loci for individual characters. The fused lasso additive model method allows us to infer some of the differentiated loci that have relatively greater causal effects on the differentiation of specific phenotypes. The experimental material that we use in the present study comes from 50 populations that have been selected for different life histories and levels of stress resistance. Differentiation of cardiac robustness, starvation resistance, desiccation resistance, lipid content, glycogen content, water content, and body masses was assayed among 40-50 of these experimentally evolved populations. Through the fused lasso additive model, we combined physiological analyses from eight parameters with whole-body pooled-seq genomic data to identify potentially causally linked genomic regions. We have identified approximately 2,176 significantly differentiated 50-kb genomic windows among our 50 populations, with 142 of those identified genomic regions that are highly likely to have a causal effect connecting specific genome sites to specific physiological characters.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.