两性离子肽-树状大分子结合整合素αvβ3的分子模拟研究。

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2023-05-01 DOI:10.1116/6.0002713
Xiaowei Lin, Nan Xu, Chen Li, Zhiyu Wu, Shengfu Chen, Yao Shi, Yi He
{"title":"两性离子肽-树状大分子结合整合素αvβ3的分子模拟研究。","authors":"Xiaowei Lin,&nbsp;Nan Xu,&nbsp;Chen Li,&nbsp;Zhiyu Wu,&nbsp;Shengfu Chen,&nbsp;Yao Shi,&nbsp;Yi He","doi":"10.1116/6.0002713","DOIUrl":null,"url":null,"abstract":"<p><p>Zwitterionic dendrimer is an effective carrier, which can restore the natural conformation of peptide segments for high bioaffinity by a hydrogen bond-induced conformational constraint approach. However, it is still unknown whether the approach is applicable for the dendrimers with different geometric sizes. Therefore, the characteristics of conjugates made from zwitterionic poly(amidoamine) (PAM) and the arginine-glycine-aspartic acid (RGD) peptide were examined to elucidate the effects of the geometric sizes of the PAM dendrimer on the conformational structure and stability of the peptide. The results show that the RGD fragments had almost the same structure and stability when conjugated with PAM(G3, G4, or G5) dendrimers. However, when conjugated with PAM(G1 or G2) dendrimers, the structural stability of these fragments was found to be much worse. Also, the structure and stability of RGD segments conjugated with PAM(G3, G4, or G5) were not affected when additional EK segments were inserted. Moreover, we observed that RGD fragments conjugated with PAM(G3, G4, or G5) dendrimers were structurally stable and similar when the concentration of NaCl was 0.15 and 0.5M. Furthermore, we show that PAM(G3, G4, or G5)-RGD conjugates bind strongly to integrin αvβ3.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 3","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular simulation studies on a zwitterionic peptide-dendrimer conjugate for integrin αvβ3 binding.\",\"authors\":\"Xiaowei Lin,&nbsp;Nan Xu,&nbsp;Chen Li,&nbsp;Zhiyu Wu,&nbsp;Shengfu Chen,&nbsp;Yao Shi,&nbsp;Yi He\",\"doi\":\"10.1116/6.0002713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Zwitterionic dendrimer is an effective carrier, which can restore the natural conformation of peptide segments for high bioaffinity by a hydrogen bond-induced conformational constraint approach. However, it is still unknown whether the approach is applicable for the dendrimers with different geometric sizes. Therefore, the characteristics of conjugates made from zwitterionic poly(amidoamine) (PAM) and the arginine-glycine-aspartic acid (RGD) peptide were examined to elucidate the effects of the geometric sizes of the PAM dendrimer on the conformational structure and stability of the peptide. The results show that the RGD fragments had almost the same structure and stability when conjugated with PAM(G3, G4, or G5) dendrimers. However, when conjugated with PAM(G1 or G2) dendrimers, the structural stability of these fragments was found to be much worse. Also, the structure and stability of RGD segments conjugated with PAM(G3, G4, or G5) were not affected when additional EK segments were inserted. Moreover, we observed that RGD fragments conjugated with PAM(G3, G4, or G5) dendrimers were structurally stable and similar when the concentration of NaCl was 0.15 and 0.5M. Furthermore, we show that PAM(G3, G4, or G5)-RGD conjugates bind strongly to integrin αvβ3.</p>\",\"PeriodicalId\":9053,\"journal\":{\"name\":\"Biointerphases\",\"volume\":\"18 3\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0002713\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002713","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

两性离子树突状大分子是一种有效的载体,通过氢键诱导的构象约束方法可以恢复肽段的自然构象,具有较高的生物亲和性。然而,该方法是否适用于不同几何尺寸的枝状大分子,目前尚不清楚。因此,研究了两性离子聚氨基胺(PAM)和精氨酸-甘氨酸-天冬氨酸(RGD)多肽的共轭物的特性,以阐明PAM树状大分子的几何尺寸对多肽构象结构和稳定性的影响。结果表明,RGD片段与PAM(G3、G4、G5)枝状大分子偶联后,具有几乎相同的结构和稳定性。然而,当与PAM(G1或G2)枝状大分子偶联时,发现这些片段的结构稳定性要差得多。此外,当插入额外的EK片段时,与PAM偶联的RGD片段(G3, G4或G5)的结构和稳定性不受影响。此外,我们观察到,当NaCl浓度为0.15和0.5M时,与PAM(G3, G4或G5)枝状大分子偶联的RGD片段结构稳定且相似。此外,我们发现PAM(G3, G4或G5)-RGD偶联物与整合素αvβ3结合强烈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular simulation studies on a zwitterionic peptide-dendrimer conjugate for integrin αvβ3 binding.

Zwitterionic dendrimer is an effective carrier, which can restore the natural conformation of peptide segments for high bioaffinity by a hydrogen bond-induced conformational constraint approach. However, it is still unknown whether the approach is applicable for the dendrimers with different geometric sizes. Therefore, the characteristics of conjugates made from zwitterionic poly(amidoamine) (PAM) and the arginine-glycine-aspartic acid (RGD) peptide were examined to elucidate the effects of the geometric sizes of the PAM dendrimer on the conformational structure and stability of the peptide. The results show that the RGD fragments had almost the same structure and stability when conjugated with PAM(G3, G4, or G5) dendrimers. However, when conjugated with PAM(G1 or G2) dendrimers, the structural stability of these fragments was found to be much worse. Also, the structure and stability of RGD segments conjugated with PAM(G3, G4, or G5) were not affected when additional EK segments were inserted. Moreover, we observed that RGD fragments conjugated with PAM(G3, G4, or G5) dendrimers were structurally stable and similar when the concentration of NaCl was 0.15 and 0.5M. Furthermore, we show that PAM(G3, G4, or G5)-RGD conjugates bind strongly to integrin αvβ3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信