{"title":"磁活化脂质纳米载体在生物医学中的应用:现状与展望。","authors":"Xiaohan Sun, Angel Tan, Ben J Boyd","doi":"10.1002/wnan.1863","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.</p>","PeriodicalId":23697,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"15 3","pages":"e1863"},"PeriodicalIF":6.9000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetically-activated lipid nanocarriers in biomedical applications: A review of current status and perspective.\",\"authors\":\"Xiaohan Sun, Angel Tan, Ben J Boyd\",\"doi\":\"10.1002/wnan.1863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.</p>\",\"PeriodicalId\":23697,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"15 3\",\"pages\":\"e1863\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1863\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/wnan.1863","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Magnetically-activated lipid nanocarriers in biomedical applications: A review of current status and perspective.
Magnetically-activated lipid nanocarriers have become a research hotspot in the field of biomedicine. Liposomes and other lipid-based carriers possess good biocompatibility as well as the ability to carrying therapeutic cargo with a range of physicochemical properties. Previous studies have demonstrated that magnetic materials have potential wide applications in clinical diagnosis and therapy, such as in MRI as contrast agents and in hyperthermic obliteration of cancer tissues. More recently magneto-thermal activation of lipid carriers to stimulate drug release has extended the range of further therapeutic benefits. Here, an overview of the current development of magnetically-activated lipid nanocarriers in the field of biomedicine is provided, including the methods of fabrication of the nanocarriers and their in vitro and in vivo performance. A discussion of the current barriers to translation of these materials as medicines is provided in the context of clinical and regulatory complexities of using magnetically responsive materials in therapeutic applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
期刊介绍:
Nanotechnology stands as one of the pivotal scientific domains of the twenty-first century, recognized universally for its transformative potential. Within the biomedical realm, nanotechnology finds crucial applications in nanobiotechnology and nanomedicine, highlighted as one of seven emerging research areas under the NIH Roadmap for Medical Research. The advancement of this field hinges upon collaborative efforts across diverse disciplines, including clinicians, biomedical engineers, materials scientists, applied physicists, and toxicologists.
Recognizing the imperative for a high-caliber interdisciplinary review platform, WIREs Nanomedicine and Nanobiotechnology emerges to fulfill this critical need. Our topical coverage spans a wide spectrum, encompassing areas such as toxicology and regulatory issues, implantable materials and surgical technologies, diagnostic tools, nanotechnology approaches to biology, therapeutic approaches and drug discovery, and biology-inspired nanomaterials. Join us in exploring the frontiers of nanotechnology and its profound impact on biomedical research and healthcare.