Pierre Schegg, Etienne Ménager, Elie Khairallah, Damien Marchal, Jérémie Dequidt, Philippe Preux, Christian Duriez
{"title":"SofaGym:基于软机器人仿真的开放式强化学习平台。","authors":"Pierre Schegg, Etienne Ménager, Elie Khairallah, Damien Marchal, Jérémie Dequidt, Philippe Preux, Christian Duriez","doi":"10.1089/soro.2021.0123","DOIUrl":null,"url":null,"abstract":"<p><p>OpenAI Gym is one of the standard interfaces used to train Reinforcement Learning (RL) Algorithms. The Simulation Open Framework Architecture (SOFA) is a physics-based engine that is used for soft robotics simulation and control based on real-time models of deformation. The aim of this article is to present <i>SofaGym</i>, an open-source software to create OpenAI Gym interfaces, called environments, out of soft robot digital twins. The link between soft robotics and RL offers new challenges for both fields: representation of the soft robot in an RL context, complex interactions with the environment, use of specific mechanical tools to control soft robots, transfer of policies learned in simulation to the real world, etc. The article presents the large possible uses of SofaGym to tackle these challenges by using RL and planning algorithms. This publication contains neither new algorithms nor new models but proposes a new platform, open to the community, that offers non existing possibilities of coupling RL to physics-based simulation of soft robots. We present 11 environments, representing a wide variety of soft robots and applications; we highlight the challenges showcased by each environment. We propose methods of solving the task using traditional control, RL, and planning and point out research perspectives using the platform.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"SofaGym: An Open Platform for Reinforcement Learning Based on Soft Robot Simulations.\",\"authors\":\"Pierre Schegg, Etienne Ménager, Elie Khairallah, Damien Marchal, Jérémie Dequidt, Philippe Preux, Christian Duriez\",\"doi\":\"10.1089/soro.2021.0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>OpenAI Gym is one of the standard interfaces used to train Reinforcement Learning (RL) Algorithms. The Simulation Open Framework Architecture (SOFA) is a physics-based engine that is used for soft robotics simulation and control based on real-time models of deformation. The aim of this article is to present <i>SofaGym</i>, an open-source software to create OpenAI Gym interfaces, called environments, out of soft robot digital twins. The link between soft robotics and RL offers new challenges for both fields: representation of the soft robot in an RL context, complex interactions with the environment, use of specific mechanical tools to control soft robots, transfer of policies learned in simulation to the real world, etc. The article presents the large possible uses of SofaGym to tackle these challenges by using RL and planning algorithms. This publication contains neither new algorithms nor new models but proposes a new platform, open to the community, that offers non existing possibilities of coupling RL to physics-based simulation of soft robots. We present 11 environments, representing a wide variety of soft robots and applications; we highlight the challenges showcased by each environment. We propose methods of solving the task using traditional control, RL, and planning and point out research perspectives using the platform.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2021.0123\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2021.0123","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
SofaGym: An Open Platform for Reinforcement Learning Based on Soft Robot Simulations.
OpenAI Gym is one of the standard interfaces used to train Reinforcement Learning (RL) Algorithms. The Simulation Open Framework Architecture (SOFA) is a physics-based engine that is used for soft robotics simulation and control based on real-time models of deformation. The aim of this article is to present SofaGym, an open-source software to create OpenAI Gym interfaces, called environments, out of soft robot digital twins. The link between soft robotics and RL offers new challenges for both fields: representation of the soft robot in an RL context, complex interactions with the environment, use of specific mechanical tools to control soft robots, transfer of policies learned in simulation to the real world, etc. The article presents the large possible uses of SofaGym to tackle these challenges by using RL and planning algorithms. This publication contains neither new algorithms nor new models but proposes a new platform, open to the community, that offers non existing possibilities of coupling RL to physics-based simulation of soft robots. We present 11 environments, representing a wide variety of soft robots and applications; we highlight the challenges showcased by each environment. We propose methods of solving the task using traditional control, RL, and planning and point out research perspectives using the platform.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.