基于机器学习方法的支气管哮喘患者呼吸音的计算机辅助检测。

IF 1.1 Q4 MEDICINE, RESEARCH & EXPERIMENTAL
A Gelman, E G Furman, N M Kalinina, S V Malinin, G B Furman, V S Sheludko, V L Sokolovsky
{"title":"基于机器学习方法的支气管哮喘患者呼吸音的计算机辅助检测。","authors":"A Gelman,&nbsp;E G Furman,&nbsp;N M Kalinina,&nbsp;S V Malinin,&nbsp;G B Furman,&nbsp;V S Sheludko,&nbsp;V L Sokolovsky","doi":"10.17691/stm2022.14.5.05","DOIUrl":null,"url":null,"abstract":"<p><p><b>The aim of the study</b> is to develop a method for detection of pathological respiratory sound, caused by bronchial asthma, with the aid of machine learning techniques.</p><p><strong>Materials and methods: </strong>To build and train neural networks, we used the records of respiratory sounds of bronchial asthma patients at different stages of the disease (n=951) aged from several months to 47 years old and healthy volunteers (n=167). The sounds were recorded with calm breathing at four points: at the oral cavity, above the trachea, on the chest (second intercostal space on the right side), and at a point on the back.</p><p><strong>Results: </strong>The method developed for computer-aided detection of respiratory sounds allows to diagnose sounds typical for bronchial asthma in 89.4% of cases with 89.3% sensitivity and 86.0% specificity regardless of sex and age of the patients, stage of the disease, and the point of sound recording.</p>","PeriodicalId":51886,"journal":{"name":"Sovremennye Tehnologii v Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171063/pdf/","citationCount":"1","resultStr":"{\"title\":\"Computer-Aided Detection of Respiratory Sounds in Bronchial Asthma Patients Based on Machine Learning Method.\",\"authors\":\"A Gelman,&nbsp;E G Furman,&nbsp;N M Kalinina,&nbsp;S V Malinin,&nbsp;G B Furman,&nbsp;V S Sheludko,&nbsp;V L Sokolovsky\",\"doi\":\"10.17691/stm2022.14.5.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>The aim of the study</b> is to develop a method for detection of pathological respiratory sound, caused by bronchial asthma, with the aid of machine learning techniques.</p><p><strong>Materials and methods: </strong>To build and train neural networks, we used the records of respiratory sounds of bronchial asthma patients at different stages of the disease (n=951) aged from several months to 47 years old and healthy volunteers (n=167). The sounds were recorded with calm breathing at four points: at the oral cavity, above the trachea, on the chest (second intercostal space on the right side), and at a point on the back.</p><p><strong>Results: </strong>The method developed for computer-aided detection of respiratory sounds allows to diagnose sounds typical for bronchial asthma in 89.4% of cases with 89.3% sensitivity and 86.0% specificity regardless of sex and age of the patients, stage of the disease, and the point of sound recording.</p>\",\"PeriodicalId\":51886,\"journal\":{\"name\":\"Sovremennye Tehnologii v Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171063/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sovremennye Tehnologii v Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17691/stm2022.14.5.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sovremennye Tehnologii v Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17691/stm2022.14.5.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

本研究的目的是在机器学习技术的帮助下,开发一种检测支气管哮喘引起的病理性呼吸音的方法。材料与方法:采用年龄在几个月~ 47岁的支气管哮喘不同阶段患者(n=951)和健康志愿者(n=167)的呼吸音记录构建和训练神经网络。这些声音是在四个点平静呼吸的情况下录制的:口腔、气管上方、胸部(右侧第二肋间隙)和背部的一个点。结果:建立的呼吸声计算机辅助检测方法,无论患者的性别、年龄、疾病分期和录音点如何,均能诊断出89.4%的支气管哮喘典型音,灵敏度为89.3%,特异性为86.0%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Computer-Aided Detection of Respiratory Sounds in Bronchial Asthma Patients Based on Machine Learning Method.

Computer-Aided Detection of Respiratory Sounds in Bronchial Asthma Patients Based on Machine Learning Method.

Computer-Aided Detection of Respiratory Sounds in Bronchial Asthma Patients Based on Machine Learning Method.

The aim of the study is to develop a method for detection of pathological respiratory sound, caused by bronchial asthma, with the aid of machine learning techniques.

Materials and methods: To build and train neural networks, we used the records of respiratory sounds of bronchial asthma patients at different stages of the disease (n=951) aged from several months to 47 years old and healthy volunteers (n=167). The sounds were recorded with calm breathing at four points: at the oral cavity, above the trachea, on the chest (second intercostal space on the right side), and at a point on the back.

Results: The method developed for computer-aided detection of respiratory sounds allows to diagnose sounds typical for bronchial asthma in 89.4% of cases with 89.3% sensitivity and 86.0% specificity regardless of sex and age of the patients, stage of the disease, and the point of sound recording.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sovremennye Tehnologii v Medicine
Sovremennye Tehnologii v Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
1.80
自引率
0.00%
发文量
38
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信