Nicolas Silvestrini, Sebastian Musslick, Anne S Berry, Eliana Vassena
{"title":"一个综合的努力:连接动机强度理论和最近的神经计算和神经元模型的努力和控制分配。","authors":"Nicolas Silvestrini, Sebastian Musslick, Anne S Berry, Eliana Vassena","doi":"10.1037/rev0000372","DOIUrl":null,"url":null,"abstract":"<p><p>An increasing number of cognitive, neurobiological, and computational models have been proposed in the last decade, seeking to explain how humans allocate physical or cognitive effort. Most models share conceptual similarities with motivational intensity theory (MIT), an influential classic psychological theory of motivation. Yet, little effort has been made to integrate such models, which remain confined within the explanatory level for which they were developed, that is, psychological, computational, neurobiological, and neuronal. In this critical review, we derive novel analyses of three recent computational and neuronal models of effort allocation-the expected value of control theory, the reinforcement meta-learner (RML) model, and the neuronal model of attentional effort-and establish a formal relationship between these models and MIT. Our analyses reveal striking similarities between predictions made by these models, with a shared key tenet: a nonmonotonic relationship between perceived task difficulty and effort, following a sawtooth or inverted U shape. In addition, the models converge on the proposition that the dorsal anterior cingulate cortex may be responsible for determining the allocation of effort and cognitive control. We conclude by discussing the distinct contributions and strengths of each theory toward understanding neurocomputational processes of effort allocation. Finally, we highlight the necessity for a unified understanding of effort allocation, by drawing novel connections between different theorizing of adaptive effort allocation as described by the presented models. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":21016,"journal":{"name":"Psychological review","volume":"130 4","pages":"1081-1103"},"PeriodicalIF":5.1000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrative effort: Bridging motivational intensity theory and recent neurocomputational and neuronal models of effort and control allocation.\",\"authors\":\"Nicolas Silvestrini, Sebastian Musslick, Anne S Berry, Eliana Vassena\",\"doi\":\"10.1037/rev0000372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An increasing number of cognitive, neurobiological, and computational models have been proposed in the last decade, seeking to explain how humans allocate physical or cognitive effort. Most models share conceptual similarities with motivational intensity theory (MIT), an influential classic psychological theory of motivation. Yet, little effort has been made to integrate such models, which remain confined within the explanatory level for which they were developed, that is, psychological, computational, neurobiological, and neuronal. In this critical review, we derive novel analyses of three recent computational and neuronal models of effort allocation-the expected value of control theory, the reinforcement meta-learner (RML) model, and the neuronal model of attentional effort-and establish a formal relationship between these models and MIT. Our analyses reveal striking similarities between predictions made by these models, with a shared key tenet: a nonmonotonic relationship between perceived task difficulty and effort, following a sawtooth or inverted U shape. In addition, the models converge on the proposition that the dorsal anterior cingulate cortex may be responsible for determining the allocation of effort and cognitive control. We conclude by discussing the distinct contributions and strengths of each theory toward understanding neurocomputational processes of effort allocation. Finally, we highlight the necessity for a unified understanding of effort allocation, by drawing novel connections between different theorizing of adaptive effort allocation as described by the presented models. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":21016,\"journal\":{\"name\":\"Psychological review\",\"volume\":\"130 4\",\"pages\":\"1081-1103\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological review\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/rev0000372\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological review","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/rev0000372","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
An integrative effort: Bridging motivational intensity theory and recent neurocomputational and neuronal models of effort and control allocation.
An increasing number of cognitive, neurobiological, and computational models have been proposed in the last decade, seeking to explain how humans allocate physical or cognitive effort. Most models share conceptual similarities with motivational intensity theory (MIT), an influential classic psychological theory of motivation. Yet, little effort has been made to integrate such models, which remain confined within the explanatory level for which they were developed, that is, psychological, computational, neurobiological, and neuronal. In this critical review, we derive novel analyses of three recent computational and neuronal models of effort allocation-the expected value of control theory, the reinforcement meta-learner (RML) model, and the neuronal model of attentional effort-and establish a formal relationship between these models and MIT. Our analyses reveal striking similarities between predictions made by these models, with a shared key tenet: a nonmonotonic relationship between perceived task difficulty and effort, following a sawtooth or inverted U shape. In addition, the models converge on the proposition that the dorsal anterior cingulate cortex may be responsible for determining the allocation of effort and cognitive control. We conclude by discussing the distinct contributions and strengths of each theory toward understanding neurocomputational processes of effort allocation. Finally, we highlight the necessity for a unified understanding of effort allocation, by drawing novel connections between different theorizing of adaptive effort allocation as described by the presented models. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
期刊介绍:
Psychological Review publishes articles that make important theoretical contributions to any area of scientific psychology, including systematic evaluation of alternative theories.