已知天然心脏糖苷-气味苷A与Na+/K+- atp酶的相互作用。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Yohei Takada, Kazuhiro Kaneko, Yoshiyuki Kawakami
{"title":"已知天然心脏糖苷-气味苷A与Na+/K+- atp酶的相互作用。","authors":"Yohei Takada,&nbsp;Kazuhiro Kaneko,&nbsp;Yoshiyuki Kawakami","doi":"10.1007/s00232-023-00281-1","DOIUrl":null,"url":null,"abstract":"<p><p>The nature of odoroside A, a cardiac glycoside (CG) extracted from Nerium oleander, as well as its chemical structure is quite similar to a well-known CG, ouabain possessing a steroid skeleton, a five-membered unsaturated lactone ring, and a sugar moiety as a common structure. Like ouabain, odoroside A inhibits the activity of Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) and shows significant anticancer activity, however its inhibitory mechanism remains unknown. CGs show various physiological activities, including cardiotonic and anticancer activities, through the inhibition of NKA by direct interaction. Additionally, X-ray crystallographic analysis revealed the inhibitory mechanism of ouabain and digoxin in relation to NKA. By using different molecular modeling techniques, docking simulation of odoroside A and NKA was conducted based on the results of these X-ray crystallographic analyses. Furthermore, a comparison of the results with the binding characteristics of three known CGs (ouabain, digoxin, and digitoxin) was also conducted. Odoroside A fitted into the CG binding pocket on the α-subunit of NKA revealed by X-ray crystallography. It had key interactions with Thr797 and Phe783. Also, three known CGs showed similar interactions with Thr797 and Phe783. Interaction modes of odoroside A were quite similar to those of ouabain, digoxin, and digitoxin. Docking simulations indicated that the sugar moiety enhanced the interaction between NKA and CGs, but did not show enhanced NKA inhibitory activity because the sugar moiety was placed outside the entrance of active site. Thus, these results suggest that the inhibitory mechanism of odoroside A to NKA is the same as the known CGs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na<sup>+</sup>/K<sup>+</sup>-ATPase.\",\"authors\":\"Yohei Takada,&nbsp;Kazuhiro Kaneko,&nbsp;Yoshiyuki Kawakami\",\"doi\":\"10.1007/s00232-023-00281-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The nature of odoroside A, a cardiac glycoside (CG) extracted from Nerium oleander, as well as its chemical structure is quite similar to a well-known CG, ouabain possessing a steroid skeleton, a five-membered unsaturated lactone ring, and a sugar moiety as a common structure. Like ouabain, odoroside A inhibits the activity of Na<sup>+</sup>/K<sup>+</sup>-ATPase (NKA) and shows significant anticancer activity, however its inhibitory mechanism remains unknown. CGs show various physiological activities, including cardiotonic and anticancer activities, through the inhibition of NKA by direct interaction. Additionally, X-ray crystallographic analysis revealed the inhibitory mechanism of ouabain and digoxin in relation to NKA. By using different molecular modeling techniques, docking simulation of odoroside A and NKA was conducted based on the results of these X-ray crystallographic analyses. Furthermore, a comparison of the results with the binding characteristics of three known CGs (ouabain, digoxin, and digitoxin) was also conducted. Odoroside A fitted into the CG binding pocket on the α-subunit of NKA revealed by X-ray crystallography. It had key interactions with Thr797 and Phe783. Also, three known CGs showed similar interactions with Thr797 and Phe783. Interaction modes of odoroside A were quite similar to those of ouabain, digoxin, and digitoxin. Docking simulations indicated that the sugar moiety enhanced the interaction between NKA and CGs, but did not show enhanced NKA inhibitory activity because the sugar moiety was placed outside the entrance of active site. Thus, these results suggest that the inhibitory mechanism of odoroside A to NKA is the same as the known CGs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-023-00281-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-023-00281-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

从夹竹桃夹竹桃中提取的心脏糖苷(CG),其性质和化学结构与著名的心脏糖苷非常相似,具有类固醇骨架、五元不饱和内酯环和一个糖段作为共同结构。与瓦巴因一样,气味皂苷A也能抑制Na+/K+- atp酶(NKA)的活性,显示出明显的抗癌活性,但其抑制机制尚不清楚。CGs通过直接相互作用抑制NKA,表现出多种生理活性,包括强心剂和抗癌活性。此外,x射线晶体学分析揭示了瓦沙因和地高辛对NKA的抑制机制。利用不同的分子建模技术,基于x射线晶体学分析结果,对气味皂苷A和NKA进行对接模拟。此外,还将结果与三种已知cg(瓦巴因、地高辛和地黄辛)的结合特性进行了比较。x射线晶体学显示,气味苷A与NKA α-亚基上的CG结合袋相吻合。它与Thr797和Phe783有关键的相互作用。此外,三个已知的cg与Thr797和Phe783表现出类似的相互作用。气味苷A与瓦沙因、地高辛、地地黄毒素的相互作用模式相似。对接模拟表明,糖片段增强了NKA与CGs之间的相互作用,但由于糖片段位于活性位点入口之外,因此没有增强NKA的抑制活性。因此,这些结果表明,气味皂苷A对NKA的抑制机制与已知的CGs相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na<sup>+</sup>/K<sup>+</sup>-ATPase.

Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na+/K+-ATPase.

The nature of odoroside A, a cardiac glycoside (CG) extracted from Nerium oleander, as well as its chemical structure is quite similar to a well-known CG, ouabain possessing a steroid skeleton, a five-membered unsaturated lactone ring, and a sugar moiety as a common structure. Like ouabain, odoroside A inhibits the activity of Na+/K+-ATPase (NKA) and shows significant anticancer activity, however its inhibitory mechanism remains unknown. CGs show various physiological activities, including cardiotonic and anticancer activities, through the inhibition of NKA by direct interaction. Additionally, X-ray crystallographic analysis revealed the inhibitory mechanism of ouabain and digoxin in relation to NKA. By using different molecular modeling techniques, docking simulation of odoroside A and NKA was conducted based on the results of these X-ray crystallographic analyses. Furthermore, a comparison of the results with the binding characteristics of three known CGs (ouabain, digoxin, and digitoxin) was also conducted. Odoroside A fitted into the CG binding pocket on the α-subunit of NKA revealed by X-ray crystallography. It had key interactions with Thr797 and Phe783. Also, three known CGs showed similar interactions with Thr797 and Phe783. Interaction modes of odoroside A were quite similar to those of ouabain, digoxin, and digitoxin. Docking simulations indicated that the sugar moiety enhanced the interaction between NKA and CGs, but did not show enhanced NKA inhibitory activity because the sugar moiety was placed outside the entrance of active site. Thus, these results suggest that the inhibitory mechanism of odoroside A to NKA is the same as the known CGs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信