{"title":"胆固醇及其生物合成前体在膜组织和动力学中的作用:荧光方法。","authors":"Sandeep Shrivastava, Yamuna Devi Paila, Amitabha Chattopadhyay","doi":"10.1007/s00232-023-00278-w","DOIUrl":null,"url":null,"abstract":"<p><p>Cholesterol is the most representative sterol present in membranes of higher eukaryotes, and is the end product of a long and multistep biosynthetic pathway. Lathosterol and zymosterol are biosynthetic precursors of cholesterol in Kandutsch-Russell and Bloch pathways, respectively. Lathosterol differs with cholesterol merely in the position of the double bond in the sterol ring, whereas zymosterol differs with cholesterol in position and number of double bonds. In this work, we have monitored the effect of cholesterol and its biosynthetic precursors (lathosterol and zymosterol) on membrane organization and dynamics in fluid and gel phase membranes. Toward this goal, we have utilized two fluorescent membrane probes, DPH and its cationic derivative TMA-DPH. Our results using these probes show that cholesterol and its biosynthetic precursors (lathosterol and zymosterol) exhibit similar trend in maintaining membrane organization and dynamics (as reported by fluorescence anisotropy and apparent rotational correlation time), in fluid phase POPC membranes. Notably, although lathosterol and zymosterol show similar trend in maintaining membrane organization and dynamics, the corresponding change for cholesterol is different in gel phase DPPC membranes. These results demonstrate that the position and number of double bonds in sterols is an important determinant in maintaining membrane physical properties. Our results assume significance since accumulation of precursors of cholesterol have been reported to be associated with severe pathological conditions.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Cholesterol and its Biosynthetic Precursors on Membrane Organization and Dynamics: A Fluorescence Approach.\",\"authors\":\"Sandeep Shrivastava, Yamuna Devi Paila, Amitabha Chattopadhyay\",\"doi\":\"10.1007/s00232-023-00278-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cholesterol is the most representative sterol present in membranes of higher eukaryotes, and is the end product of a long and multistep biosynthetic pathway. Lathosterol and zymosterol are biosynthetic precursors of cholesterol in Kandutsch-Russell and Bloch pathways, respectively. Lathosterol differs with cholesterol merely in the position of the double bond in the sterol ring, whereas zymosterol differs with cholesterol in position and number of double bonds. In this work, we have monitored the effect of cholesterol and its biosynthetic precursors (lathosterol and zymosterol) on membrane organization and dynamics in fluid and gel phase membranes. Toward this goal, we have utilized two fluorescent membrane probes, DPH and its cationic derivative TMA-DPH. Our results using these probes show that cholesterol and its biosynthetic precursors (lathosterol and zymosterol) exhibit similar trend in maintaining membrane organization and dynamics (as reported by fluorescence anisotropy and apparent rotational correlation time), in fluid phase POPC membranes. Notably, although lathosterol and zymosterol show similar trend in maintaining membrane organization and dynamics, the corresponding change for cholesterol is different in gel phase DPPC membranes. These results demonstrate that the position and number of double bonds in sterols is an important determinant in maintaining membrane physical properties. Our results assume significance since accumulation of precursors of cholesterol have been reported to be associated with severe pathological conditions.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00232-023-00278-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-023-00278-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Role of Cholesterol and its Biosynthetic Precursors on Membrane Organization and Dynamics: A Fluorescence Approach.
Cholesterol is the most representative sterol present in membranes of higher eukaryotes, and is the end product of a long and multistep biosynthetic pathway. Lathosterol and zymosterol are biosynthetic precursors of cholesterol in Kandutsch-Russell and Bloch pathways, respectively. Lathosterol differs with cholesterol merely in the position of the double bond in the sterol ring, whereas zymosterol differs with cholesterol in position and number of double bonds. In this work, we have monitored the effect of cholesterol and its biosynthetic precursors (lathosterol and zymosterol) on membrane organization and dynamics in fluid and gel phase membranes. Toward this goal, we have utilized two fluorescent membrane probes, DPH and its cationic derivative TMA-DPH. Our results using these probes show that cholesterol and its biosynthetic precursors (lathosterol and zymosterol) exhibit similar trend in maintaining membrane organization and dynamics (as reported by fluorescence anisotropy and apparent rotational correlation time), in fluid phase POPC membranes. Notably, although lathosterol and zymosterol show similar trend in maintaining membrane organization and dynamics, the corresponding change for cholesterol is different in gel phase DPPC membranes. These results demonstrate that the position and number of double bonds in sterols is an important determinant in maintaining membrane physical properties. Our results assume significance since accumulation of precursors of cholesterol have been reported to be associated with severe pathological conditions.