Lutfiyya Latief, Beric M Gilbert, Annemariè Avenant-Oldewage
{"title":"感染淡水鱼鳃的甲壳类外寄生虫的生物矿化和金属固存。","authors":"Lutfiyya Latief, Beric M Gilbert, Annemariè Avenant-Oldewage","doi":"10.1007/s00360-023-01489-2","DOIUrl":null,"url":null,"abstract":"<p><p>It has been suggested that parasites are effective bioindicators as they are sensitive to environmental changes and, in some cases, accumulate trace elements in higher concentrations than their hosts. Accumulated elements sequester in different organs. In monogenean and crustacean ectoparasites, sclerotised structures and egg yolk appear to be the preferred site for element sequestration. In this study, the sequestration of trace elements; Mg, Al, Ca, Fe, Cu, and Zn in Lamproglena clariae was studied from two rivers. Adult L. clariae were collected from the gills of Clarias gariepinus from Lake Heritage in the Crocodile River and in the Vaal River below the Vaal Dam, South Africa. Collected parasites were flash frozen in liquid nitrogen and sectioned with a cryomicrotome. Sections were treated with Phen-Green to observe fluorescent signals. Trace elements in the parasite were analysed using a scanning electron microscope with an energy-dispersive spectroscope (SEM-EDS). Results showed more intense fluorescence signals in the exoskeleton compared to tissues, and in the egg yolk. Analysis by SEM-EDS confirmed the presence of elements in the parasite from both sites. Levels of Al were higher in L. clariae from the Vaal River than those from Lake Heritage, and Fe was higher in L. clariae from Lake Heritage. Element distribution patterns in the parasite matched those in the water from the sites. Unlike other crustaceans, regulation of metals in adult females of L. clariae does not occur through moulting, but high levels occurred in the yolk.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":"193 3","pages":"271-279"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209301/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biomineralisation and metal sequestration in a crustacean ectoparasite infecting the gills of a freshwater fish.\",\"authors\":\"Lutfiyya Latief, Beric M Gilbert, Annemariè Avenant-Oldewage\",\"doi\":\"10.1007/s00360-023-01489-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been suggested that parasites are effective bioindicators as they are sensitive to environmental changes and, in some cases, accumulate trace elements in higher concentrations than their hosts. Accumulated elements sequester in different organs. In monogenean and crustacean ectoparasites, sclerotised structures and egg yolk appear to be the preferred site for element sequestration. In this study, the sequestration of trace elements; Mg, Al, Ca, Fe, Cu, and Zn in Lamproglena clariae was studied from two rivers. Adult L. clariae were collected from the gills of Clarias gariepinus from Lake Heritage in the Crocodile River and in the Vaal River below the Vaal Dam, South Africa. Collected parasites were flash frozen in liquid nitrogen and sectioned with a cryomicrotome. Sections were treated with Phen-Green to observe fluorescent signals. Trace elements in the parasite were analysed using a scanning electron microscope with an energy-dispersive spectroscope (SEM-EDS). Results showed more intense fluorescence signals in the exoskeleton compared to tissues, and in the egg yolk. Analysis by SEM-EDS confirmed the presence of elements in the parasite from both sites. Levels of Al were higher in L. clariae from the Vaal River than those from Lake Heritage, and Fe was higher in L. clariae from Lake Heritage. Element distribution patterns in the parasite matched those in the water from the sites. Unlike other crustaceans, regulation of metals in adult females of L. clariae does not occur through moulting, but high levels occurred in the yolk.</p>\",\"PeriodicalId\":56033,\"journal\":{\"name\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"volume\":\"193 3\",\"pages\":\"271-279\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10209301/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00360-023-01489-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-023-01489-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Biomineralisation and metal sequestration in a crustacean ectoparasite infecting the gills of a freshwater fish.
It has been suggested that parasites are effective bioindicators as they are sensitive to environmental changes and, in some cases, accumulate trace elements in higher concentrations than their hosts. Accumulated elements sequester in different organs. In monogenean and crustacean ectoparasites, sclerotised structures and egg yolk appear to be the preferred site for element sequestration. In this study, the sequestration of trace elements; Mg, Al, Ca, Fe, Cu, and Zn in Lamproglena clariae was studied from two rivers. Adult L. clariae were collected from the gills of Clarias gariepinus from Lake Heritage in the Crocodile River and in the Vaal River below the Vaal Dam, South Africa. Collected parasites were flash frozen in liquid nitrogen and sectioned with a cryomicrotome. Sections were treated with Phen-Green to observe fluorescent signals. Trace elements in the parasite were analysed using a scanning electron microscope with an energy-dispersive spectroscope (SEM-EDS). Results showed more intense fluorescence signals in the exoskeleton compared to tissues, and in the egg yolk. Analysis by SEM-EDS confirmed the presence of elements in the parasite from both sites. Levels of Al were higher in L. clariae from the Vaal River than those from Lake Heritage, and Fe was higher in L. clariae from Lake Heritage. Element distribution patterns in the parasite matched those in the water from the sites. Unlike other crustaceans, regulation of metals in adult females of L. clariae does not occur through moulting, but high levels occurred in the yolk.
期刊介绍:
The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.