Mohammad Salma, Elina Alaterre, Jérôme Moreaux, Eric Soler
{"title":"Var∣Decrypt:一种新颖且用户友好的工具,用于探索和优先考虑全外显子组测序数据中的变体。","authors":"Mohammad Salma, Elina Alaterre, Jérôme Moreaux, Eric Soler","doi":"10.1186/s13072-023-00497-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>High-throughput sequencing (HTS) offers unprecedented opportunities for the discovery of causative gene variants in multiple human disorders including cancers, and has revolutionized clinical diagnostics. However, despite more than a decade of use of HTS-based assays, extracting relevant functional information from whole-exome sequencing (WES) data remains challenging, especially for non-specialists lacking in-depth bioinformatic skills.</p><p><strong>Results: </strong>To address this limitation, we developed Var∣Decrypt, a web-based tool designed to greatly facilitate WES data browsing and analysis. Var∣Decrypt offers a wide range of gene and variant filtering possibilities, clustering and enrichment tools, providing an efficient way to derive patient-specific functional information and to prioritize gene variants for functional analyses. We applied Var∣Decrypt on WES datasets of 10 acute erythroid leukemia patients, a rare and aggressive form of leukemia, and recovered known disease oncogenes in addition to novel putative drivers. We additionally validated the performance of Var∣Decrypt using an independent dataset of ~ 90 multiple myeloma WES, recapitulating the identified deregulated genes and pathways, showing the general applicability and versatility of Var∣Decrypt for WES analysis.</p><p><strong>Conclusion: </strong>Despite years of use of WES in human health for diagnosis and discovery of disease drivers, WES data analysis still remains a complex task requiring advanced bioinformatic skills. In that context, there is a need for user-friendly all-in-one dedicated tools for data analysis, to allow biologists and clinicians to extract relevant biological information from patient datasets. Here, we provide Var∣Decrypt (trial version accessible here: https://vardecrypt.com/app/vardecrypt ), a simple and intuitive Rshiny application created to fill this gap. Source code and detailed user tutorial are available at https://gitlab.com/mohammadsalma/vardecrypt .</p>","PeriodicalId":49253,"journal":{"name":"Epigenetics & Chromatin","volume":"16 1","pages":"23"},"PeriodicalIF":4.2000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Var∣Decrypt: a novel and user-friendly tool to explore and prioritize variants in whole-exome sequencing data.\",\"authors\":\"Mohammad Salma, Elina Alaterre, Jérôme Moreaux, Eric Soler\",\"doi\":\"10.1186/s13072-023-00497-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>High-throughput sequencing (HTS) offers unprecedented opportunities for the discovery of causative gene variants in multiple human disorders including cancers, and has revolutionized clinical diagnostics. However, despite more than a decade of use of HTS-based assays, extracting relevant functional information from whole-exome sequencing (WES) data remains challenging, especially for non-specialists lacking in-depth bioinformatic skills.</p><p><strong>Results: </strong>To address this limitation, we developed Var∣Decrypt, a web-based tool designed to greatly facilitate WES data browsing and analysis. Var∣Decrypt offers a wide range of gene and variant filtering possibilities, clustering and enrichment tools, providing an efficient way to derive patient-specific functional information and to prioritize gene variants for functional analyses. We applied Var∣Decrypt on WES datasets of 10 acute erythroid leukemia patients, a rare and aggressive form of leukemia, and recovered known disease oncogenes in addition to novel putative drivers. We additionally validated the performance of Var∣Decrypt using an independent dataset of ~ 90 multiple myeloma WES, recapitulating the identified deregulated genes and pathways, showing the general applicability and versatility of Var∣Decrypt for WES analysis.</p><p><strong>Conclusion: </strong>Despite years of use of WES in human health for diagnosis and discovery of disease drivers, WES data analysis still remains a complex task requiring advanced bioinformatic skills. In that context, there is a need for user-friendly all-in-one dedicated tools for data analysis, to allow biologists and clinicians to extract relevant biological information from patient datasets. Here, we provide Var∣Decrypt (trial version accessible here: https://vardecrypt.com/app/vardecrypt ), a simple and intuitive Rshiny application created to fill this gap. Source code and detailed user tutorial are available at https://gitlab.com/mohammadsalma/vardecrypt .</p>\",\"PeriodicalId\":49253,\"journal\":{\"name\":\"Epigenetics & Chromatin\",\"volume\":\"16 1\",\"pages\":\"23\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics & Chromatin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13072-023-00497-4\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics & Chromatin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13072-023-00497-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Var∣Decrypt: a novel and user-friendly tool to explore and prioritize variants in whole-exome sequencing data.
Background: High-throughput sequencing (HTS) offers unprecedented opportunities for the discovery of causative gene variants in multiple human disorders including cancers, and has revolutionized clinical diagnostics. However, despite more than a decade of use of HTS-based assays, extracting relevant functional information from whole-exome sequencing (WES) data remains challenging, especially for non-specialists lacking in-depth bioinformatic skills.
Results: To address this limitation, we developed Var∣Decrypt, a web-based tool designed to greatly facilitate WES data browsing and analysis. Var∣Decrypt offers a wide range of gene and variant filtering possibilities, clustering and enrichment tools, providing an efficient way to derive patient-specific functional information and to prioritize gene variants for functional analyses. We applied Var∣Decrypt on WES datasets of 10 acute erythroid leukemia patients, a rare and aggressive form of leukemia, and recovered known disease oncogenes in addition to novel putative drivers. We additionally validated the performance of Var∣Decrypt using an independent dataset of ~ 90 multiple myeloma WES, recapitulating the identified deregulated genes and pathways, showing the general applicability and versatility of Var∣Decrypt for WES analysis.
Conclusion: Despite years of use of WES in human health for diagnosis and discovery of disease drivers, WES data analysis still remains a complex task requiring advanced bioinformatic skills. In that context, there is a need for user-friendly all-in-one dedicated tools for data analysis, to allow biologists and clinicians to extract relevant biological information from patient datasets. Here, we provide Var∣Decrypt (trial version accessible here: https://vardecrypt.com/app/vardecrypt ), a simple and intuitive Rshiny application created to fill this gap. Source code and detailed user tutorial are available at https://gitlab.com/mohammadsalma/vardecrypt .
期刊介绍:
Epigenetics & Chromatin is a peer-reviewed, open access, online journal that publishes research, and reviews, providing novel insights into epigenetic inheritance and chromatin-based interactions. The journal aims to understand how gene and chromosomal elements are regulated and their activities maintained during processes such as cell division, differentiation and environmental alteration.