三维软体机器蛇的设计、分析与实时仿真。

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Zhenyu Wan, Yinan Sun, Yun Qin, Erik H Skorina, Renato Gasoto, Ming Luo, Jie Fu, Cagdas D Onal
{"title":"三维软体机器蛇的设计、分析与实时仿真。","authors":"Zhenyu Wan,&nbsp;Yinan Sun,&nbsp;Yun Qin,&nbsp;Erik H Skorina,&nbsp;Renato Gasoto,&nbsp;Ming Luo,&nbsp;Jie Fu,&nbsp;Cagdas D Onal","doi":"10.1089/soro.2021.0144","DOIUrl":null,"url":null,"abstract":"<p><p>Snakes are a remarkable source of inspiration for mobile search-and-rescue robots. Their unique slender body structure and multiple modes of locomotion are well-suited to movement in narrow passages and other difficult terrain. The design, manufacturing, modeling, and control techniques of soft robotics make it possible to imitate the structure, mechanical properties, and locomotion gaits of snakes, opening up new possibilities in robotics research. Building on our track record of contributions in this area, this article presents a soft robotic snake made of modules that can actively deform in three-dimensional (3D) and rigorously studies its performance under a range of conditions, including gait parameters, number of modules, and differences in the environment. A soft 3D-printed wave spring sheath is developed to support the robot modules, increasing the snake's performance in climbing steps threefold. Finally, we introduce a simulator and a numerical model to provide a real-time simulation of the soft robotic snake. With the help of the real-time simulator, it is possible to develop and test new locomotion gaits for the soft robotic snake within a short period of time, compared with experimental trial and error. As a result, the soft robotic snake presented in this article is able to locomote on different surfaces, perform different bioinspired and custom gaits, and climb over steps.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 2","pages":"258-268"},"PeriodicalIF":6.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Design, Analysis, and Real-Time Simulation of a 3D Soft Robotic Snake.\",\"authors\":\"Zhenyu Wan,&nbsp;Yinan Sun,&nbsp;Yun Qin,&nbsp;Erik H Skorina,&nbsp;Renato Gasoto,&nbsp;Ming Luo,&nbsp;Jie Fu,&nbsp;Cagdas D Onal\",\"doi\":\"10.1089/soro.2021.0144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Snakes are a remarkable source of inspiration for mobile search-and-rescue robots. Their unique slender body structure and multiple modes of locomotion are well-suited to movement in narrow passages and other difficult terrain. The design, manufacturing, modeling, and control techniques of soft robotics make it possible to imitate the structure, mechanical properties, and locomotion gaits of snakes, opening up new possibilities in robotics research. Building on our track record of contributions in this area, this article presents a soft robotic snake made of modules that can actively deform in three-dimensional (3D) and rigorously studies its performance under a range of conditions, including gait parameters, number of modules, and differences in the environment. A soft 3D-printed wave spring sheath is developed to support the robot modules, increasing the snake's performance in climbing steps threefold. Finally, we introduce a simulator and a numerical model to provide a real-time simulation of the soft robotic snake. With the help of the real-time simulator, it is possible to develop and test new locomotion gaits for the soft robotic snake within a short period of time, compared with experimental trial and error. As a result, the soft robotic snake presented in this article is able to locomote on different surfaces, perform different bioinspired and custom gaits, and climb over steps.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\"10 2\",\"pages\":\"258-268\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2021.0144\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2021.0144","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 7

摘要

蛇是移动搜救机器人的灵感来源。它们独特的细长身体结构和多种运动方式,非常适合在狭窄通道和其他困难地形上运动。软机器人的设计、制造、建模和控制技术使模仿蛇的结构、机械特性和运动步态成为可能,为机器人研究开辟了新的可能性。基于我们在该领域的贡献记录,本文提出了一种由模块组成的柔软机器蛇,它可以在三维(3D)中主动变形,并严格研究了它在一系列条件下的性能,包括步态参数、模块数量和环境差异。开发了一个柔软的3d打印波浪弹簧护套来支撑机器人模块,将蛇的攀爬性能提高了三倍。最后,我们介绍了一个模拟器和一个数值模型来提供软机器蛇的实时仿真。借助实时仿真器,可以在较短的时间内开发和测试柔性机器蛇的新运动步态,与实验试错相比。因此,本文中介绍的软机器蛇能够在不同的表面上移动,执行不同的生物灵感和定制步态,并爬过台阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design, Analysis, and Real-Time Simulation of a 3D Soft Robotic Snake.

Snakes are a remarkable source of inspiration for mobile search-and-rescue robots. Their unique slender body structure and multiple modes of locomotion are well-suited to movement in narrow passages and other difficult terrain. The design, manufacturing, modeling, and control techniques of soft robotics make it possible to imitate the structure, mechanical properties, and locomotion gaits of snakes, opening up new possibilities in robotics research. Building on our track record of contributions in this area, this article presents a soft robotic snake made of modules that can actively deform in three-dimensional (3D) and rigorously studies its performance under a range of conditions, including gait parameters, number of modules, and differences in the environment. A soft 3D-printed wave spring sheath is developed to support the robot modules, increasing the snake's performance in climbing steps threefold. Finally, we introduce a simulator and a numerical model to provide a real-time simulation of the soft robotic snake. With the help of the real-time simulator, it is possible to develop and test new locomotion gaits for the soft robotic snake within a short period of time, compared with experimental trial and error. As a result, the soft robotic snake presented in this article is able to locomote on different surfaces, perform different bioinspired and custom gaits, and climb over steps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信