鉴定蛋白在CDK4/6抑制剂耐药乳腺癌细胞系蛋白质组谱中的作用

IF 3 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Molecular omics Pub Date : 2023-03-07 DOI:10.1039/D2MO00285J
Binayak Kumar, Peeyush Prasad, Ragini Singh, Ram Krishna Sahu, Ashutosh Singh, Srikrishna Jayadev Magani and Suresh Hedau
{"title":"鉴定蛋白在CDK4/6抑制剂耐药乳腺癌细胞系蛋白质组谱中的作用","authors":"Binayak Kumar, Peeyush Prasad, Ragini Singh, Ram Krishna Sahu, Ashutosh Singh, Srikrishna Jayadev Magani and Suresh Hedau","doi":"10.1039/D2MO00285J","DOIUrl":null,"url":null,"abstract":"<p >Abemaciclib (Ab) and palbociclib (Pb) are CDK4/6 inhibitors used to cure advanced breast cancer (BC). However, acquired resistance is a major challenge. The molecular mechanisms and signature proteins of therapy resistance for Ab and Pb drugs need to be explored. Here we developed resistant cells for Ab and Pb drugs in MCF-7 cell lines and explored the mechanisms and signature proteins of therapy resistance in BC. Proteome profiling was performed using the label-free proteome-orbitrap-fusion-MS-MS technique. Gene ontology (GO)-terms, KEGG pathways and network analysis were performed for the proteome data. Drug-resistant cells showed increased drug tolerance, enhanced colony formation potential and an increased gap-healing tendency for the respective drug. Up-regulation of survival genes (BCL-2 and MCL-1) and down-regulation of apoptosis inducers were observed. Drug-resistance markers (MDR-1 and ABCG2 (BCRP)) along with ESR-1, CDK4, CDK6, and cyclin-D1 genes were up-regulated in resistant cells. A total of 237 and 239 proteins were found to be differentially expressed in the Ab and Pb-resistant cells, respectively. Down-regulated proteins induce apoptosis signalling and nucleotide metabolisms and restrict EGFR signalling; however, up-regulated proteins induce Erk, wnt-β-catenin, VEGFR-PI3K-AKT, glucose transportation, and hypoxia signalling pathways and regulate hydrogen peroxide signalling pathways. The panel of identified proteins associated with these pathways might have characteristics of molecular signature and new drug targets for overcoming drug resistance in breast cancer.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 5","pages":" 404-417"},"PeriodicalIF":3.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role of identified proteins in the proteome profiles of CDK4/6 inhibitor-resistant breast cancer cell lines†\",\"authors\":\"Binayak Kumar, Peeyush Prasad, Ragini Singh, Ram Krishna Sahu, Ashutosh Singh, Srikrishna Jayadev Magani and Suresh Hedau\",\"doi\":\"10.1039/D2MO00285J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Abemaciclib (Ab) and palbociclib (Pb) are CDK4/6 inhibitors used to cure advanced breast cancer (BC). However, acquired resistance is a major challenge. The molecular mechanisms and signature proteins of therapy resistance for Ab and Pb drugs need to be explored. Here we developed resistant cells for Ab and Pb drugs in MCF-7 cell lines and explored the mechanisms and signature proteins of therapy resistance in BC. Proteome profiling was performed using the label-free proteome-orbitrap-fusion-MS-MS technique. Gene ontology (GO)-terms, KEGG pathways and network analysis were performed for the proteome data. Drug-resistant cells showed increased drug tolerance, enhanced colony formation potential and an increased gap-healing tendency for the respective drug. Up-regulation of survival genes (BCL-2 and MCL-1) and down-regulation of apoptosis inducers were observed. Drug-resistance markers (MDR-1 and ABCG2 (BCRP)) along with ESR-1, CDK4, CDK6, and cyclin-D1 genes were up-regulated in resistant cells. A total of 237 and 239 proteins were found to be differentially expressed in the Ab and Pb-resistant cells, respectively. Down-regulated proteins induce apoptosis signalling and nucleotide metabolisms and restrict EGFR signalling; however, up-regulated proteins induce Erk, wnt-β-catenin, VEGFR-PI3K-AKT, glucose transportation, and hypoxia signalling pathways and regulate hydrogen peroxide signalling pathways. The panel of identified proteins associated with these pathways might have characteristics of molecular signature and new drug targets for overcoming drug resistance in breast cancer.</p>\",\"PeriodicalId\":19065,\"journal\":{\"name\":\"Molecular omics\",\"volume\":\" 5\",\"pages\":\" 404-417\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular omics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d2mo00285j\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/mo/d2mo00285j","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

Abemaciclib (Ab)和palbociclib (Pb)是用于治疗晚期乳腺癌(BC)的CDK4/6抑制剂。然而,获得性耐药是一个重大挑战。Ab和Pb药物耐药的分子机制和特征蛋白有待进一步研究。本研究在MCF-7细胞系中培养了对Ab和Pb药物耐药的细胞,并探讨了BC治疗耐药的机制和特征蛋白。采用无标记蛋白质组-轨道-融合-质谱联用技术进行蛋白质组分析。对蛋白质组数据进行基因本体(GO)术语、KEGG通路和网络分析。耐药细胞对相应药物的耐受性增强,集落形成潜力增强,间隙愈合倾向增加。存活基因(BCL-2和MCL-1)上调,凋亡诱导因子下调。耐药标志物(MDR-1和ABCG2 (BCRP))以及ESR-1、CDK4、CDK6和cyclin-D1基因在耐药细胞中上调。共有237个蛋白和239个蛋白在Ab耐药细胞和pb耐药细胞中差异表达。下调蛋白诱导凋亡信号和核苷酸代谢,限制EGFR信号传导;然而,上调的蛋白诱导Erk、wnt-β-catenin、VEGFR-PI3K-AKT、葡萄糖转运和缺氧信号通路,并调节过氧化氢信号通路。经鉴定的与这些途径相关的蛋白组可能具有克服乳腺癌耐药的分子特征和新的药物靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Role of identified proteins in the proteome profiles of CDK4/6 inhibitor-resistant breast cancer cell lines†

Role of identified proteins in the proteome profiles of CDK4/6 inhibitor-resistant breast cancer cell lines†

Abemaciclib (Ab) and palbociclib (Pb) are CDK4/6 inhibitors used to cure advanced breast cancer (BC). However, acquired resistance is a major challenge. The molecular mechanisms and signature proteins of therapy resistance for Ab and Pb drugs need to be explored. Here we developed resistant cells for Ab and Pb drugs in MCF-7 cell lines and explored the mechanisms and signature proteins of therapy resistance in BC. Proteome profiling was performed using the label-free proteome-orbitrap-fusion-MS-MS technique. Gene ontology (GO)-terms, KEGG pathways and network analysis were performed for the proteome data. Drug-resistant cells showed increased drug tolerance, enhanced colony formation potential and an increased gap-healing tendency for the respective drug. Up-regulation of survival genes (BCL-2 and MCL-1) and down-regulation of apoptosis inducers were observed. Drug-resistance markers (MDR-1 and ABCG2 (BCRP)) along with ESR-1, CDK4, CDK6, and cyclin-D1 genes were up-regulated in resistant cells. A total of 237 and 239 proteins were found to be differentially expressed in the Ab and Pb-resistant cells, respectively. Down-regulated proteins induce apoptosis signalling and nucleotide metabolisms and restrict EGFR signalling; however, up-regulated proteins induce Erk, wnt-β-catenin, VEGFR-PI3K-AKT, glucose transportation, and hypoxia signalling pathways and regulate hydrogen peroxide signalling pathways. The panel of identified proteins associated with these pathways might have characteristics of molecular signature and new drug targets for overcoming drug resistance in breast cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular omics
Molecular omics Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍: Molecular Omics publishes high-quality research from across the -omics sciences. Topics include, but are not limited to: -omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance -omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets -omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques -studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field. Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits. Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信