Ya-Wen Wang, Weiguo Zhang, Xu Chen, Yaru Tian, Song Zhao, Kai Zhang, Jiang Zhu, Rong Ma, Jianli Wang
{"title":"乳腺癌乳头溢液外泌体microrna在降解条件下是稳定的。","authors":"Ya-Wen Wang, Weiguo Zhang, Xu Chen, Yaru Tian, Song Zhao, Kai Zhang, Jiang Zhu, Rong Ma, Jianli Wang","doi":"10.4103/cjop.CJOP-D-22-00138","DOIUrl":null,"url":null,"abstract":"<p><p>We have previously shown that microRNAs (miRNAs) in nipple discharge are potential diagnostic biomarkers. In particular, exosomes are present in nipple discharge. Herein, we sought to elucidate the protective role of exosomes on miRNAs in nipple discharge and investigate the stability of miRNAs encapsulated in exosomes under degradative conditions. A novel TTMAAlPc-RNA complex method was used to measure the RNase concentration in colostrum and nipple discharge. Quantitative real-time polymerase chain reaction was performed to test the stability of exogenous synthetic miRNAs (cel-lin-4-5p and cel-miR-2-3p) and endogenous miRNAs (hsa-miR-4732-5p, hsa-miR-3646, hsa-miR-4484, and kshv-miR-K12-5-5p). RNase was present and functional in colostrum and nipple discharge. Endogenous miRNAs were more stably expressed compared to exogenous miRNAs at room temperature and 4°C. Triton X-100 (1%, 30 min) destroyed the exosomal membrane, causing RNA degradation in colostrum but not in nipple discharge. Therefore, we confirmed that exosomes in colostrum and nipple discharge could protect miRNAs from degradation by RNase. Exosomes in nipple discharge may be more resistant to Triton X-100 lysis compared to those in the colostrum. Exosomal miRNAs in nipple discharge in breast cancer are stable under degradative conditions. Differential Triton X-100 sensitivity of exosomes of nipple discharge and colostrum warrants further investigation.</p>","PeriodicalId":10251,"journal":{"name":"Chinese Journal of Physiology","volume":"66 3","pages":"181-187"},"PeriodicalIF":1.4000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breast cancer nipple discharge exosomal microRNAs are stable under degradative conditions.\",\"authors\":\"Ya-Wen Wang, Weiguo Zhang, Xu Chen, Yaru Tian, Song Zhao, Kai Zhang, Jiang Zhu, Rong Ma, Jianli Wang\",\"doi\":\"10.4103/cjop.CJOP-D-22-00138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have previously shown that microRNAs (miRNAs) in nipple discharge are potential diagnostic biomarkers. In particular, exosomes are present in nipple discharge. Herein, we sought to elucidate the protective role of exosomes on miRNAs in nipple discharge and investigate the stability of miRNAs encapsulated in exosomes under degradative conditions. A novel TTMAAlPc-RNA complex method was used to measure the RNase concentration in colostrum and nipple discharge. Quantitative real-time polymerase chain reaction was performed to test the stability of exogenous synthetic miRNAs (cel-lin-4-5p and cel-miR-2-3p) and endogenous miRNAs (hsa-miR-4732-5p, hsa-miR-3646, hsa-miR-4484, and kshv-miR-K12-5-5p). RNase was present and functional in colostrum and nipple discharge. Endogenous miRNAs were more stably expressed compared to exogenous miRNAs at room temperature and 4°C. Triton X-100 (1%, 30 min) destroyed the exosomal membrane, causing RNA degradation in colostrum but not in nipple discharge. Therefore, we confirmed that exosomes in colostrum and nipple discharge could protect miRNAs from degradation by RNase. Exosomes in nipple discharge may be more resistant to Triton X-100 lysis compared to those in the colostrum. Exosomal miRNAs in nipple discharge in breast cancer are stable under degradative conditions. Differential Triton X-100 sensitivity of exosomes of nipple discharge and colostrum warrants further investigation.</p>\",\"PeriodicalId\":10251,\"journal\":{\"name\":\"Chinese Journal of Physiology\",\"volume\":\"66 3\",\"pages\":\"181-187\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4103/cjop.CJOP-D-22-00138\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4103/cjop.CJOP-D-22-00138","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
Breast cancer nipple discharge exosomal microRNAs are stable under degradative conditions.
We have previously shown that microRNAs (miRNAs) in nipple discharge are potential diagnostic biomarkers. In particular, exosomes are present in nipple discharge. Herein, we sought to elucidate the protective role of exosomes on miRNAs in nipple discharge and investigate the stability of miRNAs encapsulated in exosomes under degradative conditions. A novel TTMAAlPc-RNA complex method was used to measure the RNase concentration in colostrum and nipple discharge. Quantitative real-time polymerase chain reaction was performed to test the stability of exogenous synthetic miRNAs (cel-lin-4-5p and cel-miR-2-3p) and endogenous miRNAs (hsa-miR-4732-5p, hsa-miR-3646, hsa-miR-4484, and kshv-miR-K12-5-5p). RNase was present and functional in colostrum and nipple discharge. Endogenous miRNAs were more stably expressed compared to exogenous miRNAs at room temperature and 4°C. Triton X-100 (1%, 30 min) destroyed the exosomal membrane, causing RNA degradation in colostrum but not in nipple discharge. Therefore, we confirmed that exosomes in colostrum and nipple discharge could protect miRNAs from degradation by RNase. Exosomes in nipple discharge may be more resistant to Triton X-100 lysis compared to those in the colostrum. Exosomal miRNAs in nipple discharge in breast cancer are stable under degradative conditions. Differential Triton X-100 sensitivity of exosomes of nipple discharge and colostrum warrants further investigation.
期刊介绍:
Chinese Journal of Physiology is a multidisciplinary open access journal.
Chinese Journal of Physiology (CJP) publishes high quality original research papers in physiology and pathophysiology by authors all over the world. CJP welcomes submitted research papers in all aspects of physiology science in the molecular, cellular, tissue and systemic levels. Multidisciplinary sciences with a focus to understand the role of physiology in health and disease are also encouraged.
Chinese Journal of Physiology accepts fourfold article types: Original Article, Review Article (Mini-Review included), Short Communication, and Editorial. There is no cost for readers to access the full-text contents of publications.