碱基切除限制性内切酶:扩展表观遗传免疫系统的世界。

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY
Kenji K Kojima, Ichizo Kobayashi
{"title":"碱基切除限制性内切酶:扩展表观遗传免疫系统的世界。","authors":"Kenji K Kojima,&nbsp;Ichizo Kobayashi","doi":"10.1093/dnares/dsad009","DOIUrl":null,"url":null,"abstract":"<p><p>The restriction enzymes examined so far are phosphodiesterases, which cleave DNA strands by hydrolysing phosphodiester bonds. Based on the mobility of restriction-modification systems, recent studies have identified a family of restriction enzymes that excise a base in their recognition sequence to generate an abasic (AP) site unless the base is properly methylated. These restriction glycosylases also show intrinsic but uncoupled AP lyase activity at the AP site, generating an atypical strand break. Action of an AP endonuclease at the AP site may generate another atypical break, rejoining/repairing of which is difficult. This PabI family of restriction enzymes contain a novel fold (HALFPIPE) and show unusual properties, such as non-requirement of divalent cations for cleavage. These enzymes are present in Helicobacteraceae/Campylobacteraceae and in few hyperthermophilic archaeal species. In Helicobacter genomes, their recognition sites are strongly avoided, and the encoding genes are often inactivated by mutations or replacement, indicating that their expression is toxic for the cells. The discovery of restriction glycosylases generalizes the concept of restriction-modification systems to epigenetic immune systems, which may use any mode of damage to DNA that are considered 'non-self' based on epigenetic modifications. This concept will add to our understanding of immunity and epigenetics.</p>","PeriodicalId":51014,"journal":{"name":"DNA Research","volume":"30 4","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273834/pdf/","citationCount":"0","resultStr":"{\"title\":\"Base-excision restriction enzymes: expanding the world of epigenetic immune systems.\",\"authors\":\"Kenji K Kojima,&nbsp;Ichizo Kobayashi\",\"doi\":\"10.1093/dnares/dsad009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The restriction enzymes examined so far are phosphodiesterases, which cleave DNA strands by hydrolysing phosphodiester bonds. Based on the mobility of restriction-modification systems, recent studies have identified a family of restriction enzymes that excise a base in their recognition sequence to generate an abasic (AP) site unless the base is properly methylated. These restriction glycosylases also show intrinsic but uncoupled AP lyase activity at the AP site, generating an atypical strand break. Action of an AP endonuclease at the AP site may generate another atypical break, rejoining/repairing of which is difficult. This PabI family of restriction enzymes contain a novel fold (HALFPIPE) and show unusual properties, such as non-requirement of divalent cations for cleavage. These enzymes are present in Helicobacteraceae/Campylobacteraceae and in few hyperthermophilic archaeal species. In Helicobacter genomes, their recognition sites are strongly avoided, and the encoding genes are often inactivated by mutations or replacement, indicating that their expression is toxic for the cells. The discovery of restriction glycosylases generalizes the concept of restriction-modification systems to epigenetic immune systems, which may use any mode of damage to DNA that are considered 'non-self' based on epigenetic modifications. This concept will add to our understanding of immunity and epigenetics.</p>\",\"PeriodicalId\":51014,\"journal\":{\"name\":\"DNA Research\",\"volume\":\"30 4\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10273834/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/dnares/dsad009\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/dnares/dsad009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

目前研究的限制性内切酶是磷酸二酯酶,它通过水解磷酸二酯键来切割DNA链。基于限制性内切修饰系统的移动性,最近的研究已经确定了一类限制性内切酶,这些酶在其识别序列中去除一个碱基以产生一个碱基(AP)位点,除非该碱基被适当地甲基化。这些限制性内切糖基化酶在AP位点也显示出固有的但不偶联的AP裂解酶活性,产生非典型的链断裂。AP内切酶在AP位点的作用可能产生另一个非典型断裂,其重新连接/修复是困难的。这个pai酶家族含有一个新的折叠(HALFPIPE),并显示出不同寻常的特性,如不需要二价阳离子进行切割。这些酶存在于幽门杆菌科/弯曲杆菌科和少数嗜热古细菌物种中。在幽门螺杆菌基因组中,它们的识别位点被强烈避免,编码基因经常因突变或替换而失活,这表明它们的表达对细胞是有毒的。限制性内切糖基酶的发现将限制性修饰系统的概念推广到表观遗传免疫系统,它可以使用基于表观遗传修饰的任何被认为是“非自我”的DNA损伤模式。这个概念将增加我们对免疫和表观遗传学的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Base-excision restriction enzymes: expanding the world of epigenetic immune systems.

Base-excision restriction enzymes: expanding the world of epigenetic immune systems.

Base-excision restriction enzymes: expanding the world of epigenetic immune systems.

Base-excision restriction enzymes: expanding the world of epigenetic immune systems.

The restriction enzymes examined so far are phosphodiesterases, which cleave DNA strands by hydrolysing phosphodiester bonds. Based on the mobility of restriction-modification systems, recent studies have identified a family of restriction enzymes that excise a base in their recognition sequence to generate an abasic (AP) site unless the base is properly methylated. These restriction glycosylases also show intrinsic but uncoupled AP lyase activity at the AP site, generating an atypical strand break. Action of an AP endonuclease at the AP site may generate another atypical break, rejoining/repairing of which is difficult. This PabI family of restriction enzymes contain a novel fold (HALFPIPE) and show unusual properties, such as non-requirement of divalent cations for cleavage. These enzymes are present in Helicobacteraceae/Campylobacteraceae and in few hyperthermophilic archaeal species. In Helicobacter genomes, their recognition sites are strongly avoided, and the encoding genes are often inactivated by mutations or replacement, indicating that their expression is toxic for the cells. The discovery of restriction glycosylases generalizes the concept of restriction-modification systems to epigenetic immune systems, which may use any mode of damage to DNA that are considered 'non-self' based on epigenetic modifications. This concept will add to our understanding of immunity and epigenetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DNA Research
DNA Research 生物-遗传学
CiteScore
6.00
自引率
4.90%
发文量
39
审稿时长
4.5 months
期刊介绍: DNA Research is an internationally peer-reviewed journal which aims at publishing papers of highest quality in broad aspects of DNA and genome-related research. Emphasis will be made on the following subjects: 1) Sequencing and characterization of genomes/important genomic regions, 2) Comprehensive analysis of the functions of genes, gene families and genomes, 3) Techniques and equipments useful for structural and functional analysis of genes, gene families and genomes, 4) Computer algorithms and/or their applications relevant to structural and functional analysis of genes and genomes. The journal also welcomes novel findings in other scientific disciplines related to genomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信