色氨酸侧链的构象选择通过Ser/Ile双突变驱动PET水解酶活性的普遍提高

IF 3.3 Q2 CHEMISTRY, MULTIDISCIPLINARY
Alessandro Crnjar, Aransa Griñen, Shina C. L. Kamerlin* and César A. Ramírez-Sarmiento*, 
{"title":"色氨酸侧链的构象选择通过Ser/Ile双突变驱动PET水解酶活性的普遍提高","authors":"Alessandro Crnjar,&nbsp;Aransa Griñen,&nbsp;Shina C. L. Kamerlin* and César A. Ramírez-Sarmiento*,&nbsp;","doi":"10.1021/acsorginorgau.2c00054","DOIUrl":null,"url":null,"abstract":"<p >Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from <i>Ideonella sakaiensis</i> (<i>Is</i>PETase) having optimal catalytic activity at 30–35 °C. Crystal structures of <i>Is</i>PETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release. This is facilitated by two residues unique to <i>Is</i>PETase, S214 and I218. When these residues are inserted into other PET hydrolases in place of the otherwise strictly conserved histidine and phenylalanine residues found at their respective positions, they enhance activity and decrease <i>T</i><sub>opt</sub>. Herein, we combine molecular dynamics and well-tempered metadynamics simulations to investigate dynamic changes of the S214/I218 and H214/F218 variants of <i>Is</i>PETase, as well as three other mesophilic and thermophilic PET hydrolases, at their respective temperature and pH optima. Our simulations show that the S214/I218 insertion both increases the flexibility of active site loop regions harboring key catalytic residues and the conserved tryptophan and expands the conformational plasticity of this tryptophan side chain, enabling the conformational transitions that allow for substrate binding and product release in <i>Is</i>PETase. The observed catalytic enhancement caused by this substitution in other PET hydrolases appears to be due to conformational selection, by capturing the conformational ensemble observed in <i>Is</i>PETase.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00054","citationCount":"6","resultStr":"{\"title\":\"Conformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation\",\"authors\":\"Alessandro Crnjar,&nbsp;Aransa Griñen,&nbsp;Shina C. L. Kamerlin* and César A. Ramírez-Sarmiento*,&nbsp;\",\"doi\":\"10.1021/acsorginorgau.2c00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from <i>Ideonella sakaiensis</i> (<i>Is</i>PETase) having optimal catalytic activity at 30–35 °C. Crystal structures of <i>Is</i>PETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release. This is facilitated by two residues unique to <i>Is</i>PETase, S214 and I218. When these residues are inserted into other PET hydrolases in place of the otherwise strictly conserved histidine and phenylalanine residues found at their respective positions, they enhance activity and decrease <i>T</i><sub>opt</sub>. Herein, we combine molecular dynamics and well-tempered metadynamics simulations to investigate dynamic changes of the S214/I218 and H214/F218 variants of <i>Is</i>PETase, as well as three other mesophilic and thermophilic PET hydrolases, at their respective temperature and pH optima. Our simulations show that the S214/I218 insertion both increases the flexibility of active site loop regions harboring key catalytic residues and the conserved tryptophan and expands the conformational plasticity of this tryptophan side chain, enabling the conformational transitions that allow for substrate binding and product release in <i>Is</i>PETase. The observed catalytic enhancement caused by this substitution in other PET hydrolases appears to be due to conformational selection, by capturing the conformational ensemble observed in <i>Is</i>PETase.</p>\",\"PeriodicalId\":29797,\"journal\":{\"name\":\"ACS Organic & Inorganic Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00054\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Organic & Inorganic Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Organic & Inorganic Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsorginorgau.2c00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

聚对苯二甲酸乙二醇酯(PET)是包装行业中最常见的聚酯塑料,由于其单一用途,也是环境污染的主要来源。已经发现几种被称为PET水解酶的酶可以在不同的温度下水解这种聚合物,其中来自萨凯氏Ideonella sakaiensis的酶(IsPETase)在30–35°C下具有最佳的催化活性。IsPETase的晶体结构显示,活性位点环(W185)内保守的色氨酸残基的侧链在三种构象之间移动,以实现底物结合和产物释放。这是由IsPETase特有的两个残基S214和I218促进的。当这些残基被插入其他PET水解酶中以取代在其各自位置发现的严格保守的组氨酸和苯丙氨酸残基时,它们增强了活性并降低了Topt。在此,我们结合分子动力学和回火宏观动力学模拟,研究了IsPETase的S214/I218和H214/F218变体,以及其他三种中温和嗜热PET水解酶在各自的最佳温度和pH下的动态变化。我们的模拟表明,S214/I218插入既增加了含有关键催化残基和保守色氨酸的活性位点环区的灵活性,又扩大了色氨酸侧链的构象可塑性,实现了构象转变,从而允许底物结合和产物在IsPETase中释放。在其他PET水解酶中由这种取代引起的观察到的催化增强似乎是由于构象选择,通过捕获在IsPETase中观察到的构象集合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Conformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation

Conformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation

Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from Ideonella sakaiensis (IsPETase) having optimal catalytic activity at 30–35 °C. Crystal structures of IsPETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release. This is facilitated by two residues unique to IsPETase, S214 and I218. When these residues are inserted into other PET hydrolases in place of the otherwise strictly conserved histidine and phenylalanine residues found at their respective positions, they enhance activity and decrease Topt. Herein, we combine molecular dynamics and well-tempered metadynamics simulations to investigate dynamic changes of the S214/I218 and H214/F218 variants of IsPETase, as well as three other mesophilic and thermophilic PET hydrolases, at their respective temperature and pH optima. Our simulations show that the S214/I218 insertion both increases the flexibility of active site loop regions harboring key catalytic residues and the conserved tryptophan and expands the conformational plasticity of this tryptophan side chain, enabling the conformational transitions that allow for substrate binding and product release in IsPETase. The observed catalytic enhancement caused by this substitution in other PET hydrolases appears to be due to conformational selection, by capturing the conformational ensemble observed in IsPETase.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Organic & Inorganic Au
ACS Organic & Inorganic Au 有机化学、无机化学-
CiteScore
4.10
自引率
0.00%
发文量
0
期刊介绍: ACS Organic & Inorganic Au is an open access journal that publishes original experimental and theoretical/computational studies on organic organometallic inorganic crystal growth and engineering and organic process chemistry. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Organic chemistry Organometallic chemistry Inorganic Chemistry and Organic Process Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信