{"title":"裸盖菇素在自然界中的进化与生态学","authors":"Matthew Meyer , Jason Slot","doi":"10.1016/j.fgb.2023.103812","DOIUrl":null,"url":null,"abstract":"<div><p>Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.</p></div>","PeriodicalId":55135,"journal":{"name":"Fungal Genetics and Biology","volume":"167 ","pages":"Article 103812"},"PeriodicalIF":2.4000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The evolution and ecology of psilocybin in nature\",\"authors\":\"Matthew Meyer , Jason Slot\",\"doi\":\"10.1016/j.fgb.2023.103812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.</p></div>\",\"PeriodicalId\":55135,\"journal\":{\"name\":\"Fungal Genetics and Biology\",\"volume\":\"167 \",\"pages\":\"Article 103812\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal Genetics and Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1087184523000439\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal Genetics and Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1087184523000439","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Fungi produce diverse metabolites that can have antimicrobial, antifungal, antifeedant, or psychoactive properties. Among these metabolites are the tryptamine-derived compounds psilocybin, its precursors, and natural derivatives (collectively referred to as psiloids), which have played significant roles in human society and culture. The high allocation of nitrogen to psiloids in mushrooms, along with evidence of convergent evolution and horizontal transfer of psilocybin genes, suggest they provide a selective benefit to some fungi. However, no precise ecological roles of psilocybin have been experimentally determined. The structural and functional similarities of psiloids to serotonin, an essential neurotransmitter in animals, suggest that they may enhance the fitness of fungi through interference with serotonergic processes. However, other ecological mechanisms of psiloids have been proposed. Here, we review the literature pertinent to psilocybin ecology and propose potential adaptive advantages psiloids may confer to fungi.
期刊介绍:
Fungal Genetics and Biology, formerly known as Experimental Mycology, publishes experimental investigations of fungi and their traditional allies that relate structure and function to growth, reproduction, morphogenesis, and differentiation. This journal especially welcomes studies of gene organization and expression and of developmental processes at the cellular, subcellular, and molecular levels. The journal also includes suitable experimental inquiries into fungal cytology, biochemistry, physiology, genetics, and phylogeny.
Fungal Genetics and Biology publishes basic research conducted by mycologists, cell biologists, biochemists, geneticists, and molecular biologists.
Research Areas include:
• Biochemistry
• Cytology
• Developmental biology
• Evolutionary biology
• Genetics
• Molecular biology
• Phylogeny
• Physiology.