Kinga Garstka, Aleksandra Hecel, Henryk Kozłowski, Magdalena Rowińska-Żyrek
{"title":"烟曲霉产锌载体Aspf2 c端特定Zn(II)结合位点。","authors":"Kinga Garstka, Aleksandra Hecel, Henryk Kozłowski, Magdalena Rowińska-Żyrek","doi":"10.1093/mtomcs/mfac042","DOIUrl":null,"url":null,"abstract":"<p><p>Aspergillus fumigatus, one of the most widespread opportunistic human fungal pathogens, adapts to zinc limitation by secreting a 310 amino acid Aspf2 zincophore, able to specifically bind Zn(II) and deliver it to a transmembrane zinc transporter, ZrfC. In this work, we focus on the thermodynamics of Zn(II) complexes with unstructured regions of Aspf2; basing on a variety of spectrometric and potentiometric data, we show that the C-terminal part has the highest Zn(II)-binding affinity among the potential binding sites, and Ni(II) does not compete with Zn(II) binding to this region. The 14 amino acid Aspf2 C-terminus coordinates Zn(II) via two Cys thiolates and two His imidazoles and it could be considered as a promising A. fumigatus targeting molecule.</p>","PeriodicalId":89,"journal":{"name":"Metallomics","volume":"14 7","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780748/pdf/","citationCount":"2","resultStr":"{\"title\":\"Specific Zn(II)-binding site in the C-terminus of Aspf2, a zincophore from Aspergillus fumigatus.\",\"authors\":\"Kinga Garstka, Aleksandra Hecel, Henryk Kozłowski, Magdalena Rowińska-Żyrek\",\"doi\":\"10.1093/mtomcs/mfac042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aspergillus fumigatus, one of the most widespread opportunistic human fungal pathogens, adapts to zinc limitation by secreting a 310 amino acid Aspf2 zincophore, able to specifically bind Zn(II) and deliver it to a transmembrane zinc transporter, ZrfC. In this work, we focus on the thermodynamics of Zn(II) complexes with unstructured regions of Aspf2; basing on a variety of spectrometric and potentiometric data, we show that the C-terminal part has the highest Zn(II)-binding affinity among the potential binding sites, and Ni(II) does not compete with Zn(II) binding to this region. The 14 amino acid Aspf2 C-terminus coordinates Zn(II) via two Cys thiolates and two His imidazoles and it could be considered as a promising A. fumigatus targeting molecule.</p>\",\"PeriodicalId\":89,\"journal\":{\"name\":\"Metallomics\",\"volume\":\"14 7\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780748/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/mtomcs/mfac042\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/mtomcs/mfac042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Specific Zn(II)-binding site in the C-terminus of Aspf2, a zincophore from Aspergillus fumigatus.
Aspergillus fumigatus, one of the most widespread opportunistic human fungal pathogens, adapts to zinc limitation by secreting a 310 amino acid Aspf2 zincophore, able to specifically bind Zn(II) and deliver it to a transmembrane zinc transporter, ZrfC. In this work, we focus on the thermodynamics of Zn(II) complexes with unstructured regions of Aspf2; basing on a variety of spectrometric and potentiometric data, we show that the C-terminal part has the highest Zn(II)-binding affinity among the potential binding sites, and Ni(II) does not compete with Zn(II) binding to this region. The 14 amino acid Aspf2 C-terminus coordinates Zn(II) via two Cys thiolates and two His imidazoles and it could be considered as a promising A. fumigatus targeting molecule.