蛋白质动力学的新兴时间分辨X射线衍射方法。

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Doeke R Hekstra
{"title":"蛋白质动力学的新兴时间分辨X射线衍射方法。","authors":"Doeke R Hekstra","doi":"10.1146/annurev-biophys-111622-091155","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins guide the flows of information, energy, and matter that make life possible by accelerating transport and chemical reactions, by allosterically modulating these reactions, and by forming dynamic supramolecular assemblies. In these roles, conformational change underlies functional transitions. Time-resolved X-ray diffraction methods characterize these transitions either by directly triggering sequences of functionally important motions or, more broadly, by capturing the motions of which proteins are capable. To date, most successful have been experiments in which conformational change is triggered in light-dependent proteins. In this review, I emphasize emerging techniques that probe the dynamic basis of function in proteins lacking natively light-dependent transitions and speculate about extensions and further possibilities. In addition, I review how the weaker and more distributed signals in these data push the limits of the capabilities of analytical methods. Taken together, these new methods are beginning to establish a powerful paradigm for the study of the physics of protein function.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"52 ","pages":"255-274"},"PeriodicalIF":10.4000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687665/pdf/","citationCount":"2","resultStr":"{\"title\":\"Emerging Time-Resolved X-Ray Diffraction Approaches for Protein Dynamics.\",\"authors\":\"Doeke R Hekstra\",\"doi\":\"10.1146/annurev-biophys-111622-091155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Proteins guide the flows of information, energy, and matter that make life possible by accelerating transport and chemical reactions, by allosterically modulating these reactions, and by forming dynamic supramolecular assemblies. In these roles, conformational change underlies functional transitions. Time-resolved X-ray diffraction methods characterize these transitions either by directly triggering sequences of functionally important motions or, more broadly, by capturing the motions of which proteins are capable. To date, most successful have been experiments in which conformational change is triggered in light-dependent proteins. In this review, I emphasize emerging techniques that probe the dynamic basis of function in proteins lacking natively light-dependent transitions and speculate about extensions and further possibilities. In addition, I review how the weaker and more distributed signals in these data push the limits of the capabilities of analytical methods. Taken together, these new methods are beginning to establish a powerful paradigm for the study of the physics of protein function.</p>\",\"PeriodicalId\":50756,\"journal\":{\"name\":\"Annual Review of Biophysics\",\"volume\":\"52 \",\"pages\":\"255-274\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687665/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biophys-111622-091155\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-111622-091155","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

摘要

蛋白质通过加速运输和化学反应,通过变构调节这些反应,并通过形成动态超分子组装体,引导信息、能量和物质的流动,使生命成为可能。在这些角色中,构象变化是功能转换的基础。时间分辨X射线衍射方法通过直接触发功能上重要的运动序列来表征这些转变,或者更广泛地说,通过捕捉蛋白质能够进行的运动来表征这些转换。迄今为止,最成功的是在光依赖性蛋白质中触发构象变化的实验。在这篇综述中,我强调了新出现的技术,这些技术探索了缺乏天然光依赖性转变的蛋白质功能的动态基础,并推测了扩展和进一步的可能性。此外,我还回顾了这些数据中较弱且分布更广的信号是如何突破分析方法能力的极限的。总之,这些新方法开始为蛋白质功能的物理研究建立一个强大的范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emerging Time-Resolved X-Ray Diffraction Approaches for Protein Dynamics.

Proteins guide the flows of information, energy, and matter that make life possible by accelerating transport and chemical reactions, by allosterically modulating these reactions, and by forming dynamic supramolecular assemblies. In these roles, conformational change underlies functional transitions. Time-resolved X-ray diffraction methods characterize these transitions either by directly triggering sequences of functionally important motions or, more broadly, by capturing the motions of which proteins are capable. To date, most successful have been experiments in which conformational change is triggered in light-dependent proteins. In this review, I emphasize emerging techniques that probe the dynamic basis of function in proteins lacking natively light-dependent transitions and speculate about extensions and further possibilities. In addition, I review how the weaker and more distributed signals in these data push the limits of the capabilities of analytical methods. Taken together, these new methods are beginning to establish a powerful paradigm for the study of the physics of protein function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信