发展的几何视角

IF 1.7 4区 生物学 Q4 CELL BIOLOGY
Archishman Raju, Eric D. Siggia
{"title":"发展的几何视角","authors":"Archishman Raju,&nbsp;Eric D. Siggia","doi":"10.1111/dgd.12855","DOIUrl":null,"url":null,"abstract":"<p>Cell fate decisions emerge as a consequence of a complex set of gene regulatory networks. Models of these networks are known to have more parameters than data can determine. Recent work, inspired by Waddington's metaphor of a landscape, has instead tried to understand the geometry of gene regulatory networks. Here, we describe recent results on the appropriate mathematical framework for constructing these landscapes. This allows the construction of minimally parameterized models consistent with cell behavior. We review existing examples where geometrical models have been used to fit experimental data on cell fate and describe how spatial interactions between cells can be understood geometrically.</p>","PeriodicalId":50589,"journal":{"name":"Development Growth & Differentiation","volume":"65 5","pages":"245-254"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A geometrical perspective on development\",\"authors\":\"Archishman Raju,&nbsp;Eric D. Siggia\",\"doi\":\"10.1111/dgd.12855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cell fate decisions emerge as a consequence of a complex set of gene regulatory networks. Models of these networks are known to have more parameters than data can determine. Recent work, inspired by Waddington's metaphor of a landscape, has instead tried to understand the geometry of gene regulatory networks. Here, we describe recent results on the appropriate mathematical framework for constructing these landscapes. This allows the construction of minimally parameterized models consistent with cell behavior. We review existing examples where geometrical models have been used to fit experimental data on cell fate and describe how spatial interactions between cells can be understood geometrically.</p>\",\"PeriodicalId\":50589,\"journal\":{\"name\":\"Development Growth & Differentiation\",\"volume\":\"65 5\",\"pages\":\"245-254\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Growth & Differentiation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12855\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Growth & Differentiation","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/dgd.12855","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

细胞命运的决定是一套复杂的基因调控网络的结果。众所周知,这些网络的模型具有比数据所能确定的更多的参数。受沃丁顿景观比喻的启发,最近的研究转而试图理解基因调控网络的几何结构。在这里,我们描述了关于构建这些景观的适当数学框架的最新结果。这允许构建与细胞行为一致的最小参数化模型。我们回顾了现有的例子,其中几何模型已用于拟合细胞命运的实验数据,并描述了如何从几何角度理解细胞之间的空间相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A geometrical perspective on development

A geometrical perspective on development

Cell fate decisions emerge as a consequence of a complex set of gene regulatory networks. Models of these networks are known to have more parameters than data can determine. Recent work, inspired by Waddington's metaphor of a landscape, has instead tried to understand the geometry of gene regulatory networks. Here, we describe recent results on the appropriate mathematical framework for constructing these landscapes. This allows the construction of minimally parameterized models consistent with cell behavior. We review existing examples where geometrical models have been used to fit experimental data on cell fate and describe how spatial interactions between cells can be understood geometrically.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development Growth & Differentiation
Development Growth & Differentiation 生物-发育生物学
CiteScore
4.60
自引率
4.00%
发文量
62
审稿时长
6 months
期刊介绍: Development Growth & Differentiation (DGD) publishes three types of articles: original, resource, and review papers. Original papers are on any subjects having a context in development, growth, and differentiation processes in animals, plants, and microorganisms, dealing with molecular, genetic, cellular and organismal phenomena including metamorphosis and regeneration, while using experimental, theoretical, and bioinformatic approaches. Papers on other related fields are also welcome, such as stem cell biology, genomics, neuroscience, Evodevo, Ecodevo, and medical science as well as related methodology (new or revised techniques) and bioresources. Resource papers describe a dataset, such as whole genome sequences and expressed sequence tags (ESTs), with some biological insights, which should be valuable for studying the subjects as mentioned above. Submission of review papers is also encouraged, especially those providing a new scope based on the authors’ own study, or a summarization of their study series.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信