Fan Yang , Zhangjun Cao , Can Li , Lin Chen , Guochao Wu , Xingping Zhou , Feng F. Hong
{"title":"利用富含甘露糖的资源生产细菌纤维素的木霉菌ATCC 23770重组菌株","authors":"Fan Yang , Zhangjun Cao , Can Li , Lin Chen , Guochao Wu , Xingping Zhou , Feng F. Hong","doi":"10.1016/j.nbt.2023.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The development of bacterial cellulose (BC) industrialization has been seriously affected by its production. Mannose/mannan is an essential component in many biomass resources, but <em>Komagataeibacter xylinus</em> uses mannose in an ineffective way, resulting in waste. The aim of this study was to construct recombinant bacteria to use mannose-rich biomass efficiently as an alternative and inexpensive carbon source in place of the more commonly used glucose. This strategy aimed at modification of the mannose catabolic pathway via genetic engineering of <em>K. xylinus</em> ATCC 23770 strain through expression of mannose kinase and phosphomannose isomerase genes from the <em>Escherichia coli</em> K-12 strain. Recombinant and wild-type strains were cultured under conditions of glucose and mannose respectively as sole carbon sources. The fermentation process and physicochemical properties of BC were investigated in detail in the strains cultured in mannose media. The comparison showed that with mannose as the sole carbon source, the BC yield from the recombinant strain increased by 84%, and its tensile strength and elongation were increased 1.7 fold, while Young's modulus was increased 1.3 fold. The results demonstrated a successful improvement in BC yield and properties on mannose-based medium compared with the wild-type strain. Thus, the strategy of modifying the mannose catabolic pathway of <em>K. xylinus</em> is feasible and has significant potential in reducing the production costs for industrial production of BC from mannose-rich biomass.</p></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A recombinant strain of Komagataeibacter xylinus ATCC 23770 for production of bacterial cellulose from mannose-rich resources\",\"authors\":\"Fan Yang , Zhangjun Cao , Can Li , Lin Chen , Guochao Wu , Xingping Zhou , Feng F. Hong\",\"doi\":\"10.1016/j.nbt.2023.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of bacterial cellulose (BC) industrialization has been seriously affected by its production. Mannose/mannan is an essential component in many biomass resources, but <em>Komagataeibacter xylinus</em> uses mannose in an ineffective way, resulting in waste. The aim of this study was to construct recombinant bacteria to use mannose-rich biomass efficiently as an alternative and inexpensive carbon source in place of the more commonly used glucose. This strategy aimed at modification of the mannose catabolic pathway via genetic engineering of <em>K. xylinus</em> ATCC 23770 strain through expression of mannose kinase and phosphomannose isomerase genes from the <em>Escherichia coli</em> K-12 strain. Recombinant and wild-type strains were cultured under conditions of glucose and mannose respectively as sole carbon sources. The fermentation process and physicochemical properties of BC were investigated in detail in the strains cultured in mannose media. The comparison showed that with mannose as the sole carbon source, the BC yield from the recombinant strain increased by 84%, and its tensile strength and elongation were increased 1.7 fold, while Young's modulus was increased 1.3 fold. The results demonstrated a successful improvement in BC yield and properties on mannose-based medium compared with the wild-type strain. Thus, the strategy of modifying the mannose catabolic pathway of <em>K. xylinus</em> is feasible and has significant potential in reducing the production costs for industrial production of BC from mannose-rich biomass.</p></div>\",\"PeriodicalId\":19190,\"journal\":{\"name\":\"New biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1871678423000225\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678423000225","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A recombinant strain of Komagataeibacter xylinus ATCC 23770 for production of bacterial cellulose from mannose-rich resources
The development of bacterial cellulose (BC) industrialization has been seriously affected by its production. Mannose/mannan is an essential component in many biomass resources, but Komagataeibacter xylinus uses mannose in an ineffective way, resulting in waste. The aim of this study was to construct recombinant bacteria to use mannose-rich biomass efficiently as an alternative and inexpensive carbon source in place of the more commonly used glucose. This strategy aimed at modification of the mannose catabolic pathway via genetic engineering of K. xylinus ATCC 23770 strain through expression of mannose kinase and phosphomannose isomerase genes from the Escherichia coli K-12 strain. Recombinant and wild-type strains were cultured under conditions of glucose and mannose respectively as sole carbon sources. The fermentation process and physicochemical properties of BC were investigated in detail in the strains cultured in mannose media. The comparison showed that with mannose as the sole carbon source, the BC yield from the recombinant strain increased by 84%, and its tensile strength and elongation were increased 1.7 fold, while Young's modulus was increased 1.3 fold. The results demonstrated a successful improvement in BC yield and properties on mannose-based medium compared with the wild-type strain. Thus, the strategy of modifying the mannose catabolic pathway of K. xylinus is feasible and has significant potential in reducing the production costs for industrial production of BC from mannose-rich biomass.
期刊介绍:
New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international.
The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.