肺炎链球菌继发感染会降低流感病毒的复制,并与严重疾病相关。

FEMS microbes Pub Date : 2022-03-04 eCollection Date: 2022-01-01 DOI:10.1093/femsmc/xtac007
Karina Mueller Brown, Valerie Le Sage, Andrea J French, Jennifer E Jones, Gabriella H Padovani, Annika J Avery, Stacey Schultz-Cherry, Jason W Rosch, N Luisa Hiller, Seema S Lakdawala
{"title":"肺炎链球菌继发感染会降低流感病毒的复制,并与严重疾病相关。","authors":"Karina Mueller Brown, Valerie Le Sage, Andrea J French, Jennifer E Jones, Gabriella H Padovani, Annika J Avery, Stacey Schultz-Cherry, Jason W Rosch, N Luisa Hiller, Seema S Lakdawala","doi":"10.1093/femsmc/xtac007","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary bacterial infection is a common complication in severe influenza virus infections. During the H1N1 pandemic of 2009, increased mortality was observed among healthy young adults due to secondary bacterial pneumonia, one of the most frequent bacterial species being <i>Streptococcus pneumoniae</i> (Spn). Previous studies in mice and ferrets have suggested a synergistic relationship between Spn and influenza viruses. In this study, the ferret model was used to examine whether secondary Spn infection (strains BHN97 and D39) influence replication and airborne transmission of the 2009 pandemic H1N1 virus (H1N1pdm09). Secondary infection with Spn after H1N1pdm09 infection consistently resulted in a significant decrease in viral titers in the ferret nasal washes. While secondary Spn infection appeared to negatively impact influenza virus replication, animals precolonized with Spn were equally susceptible to H1N1pdm09 airborne transmission. In line with previous work, ferrets with preceding H1N1pdm09 and secondary Spn infection had increased bacterial loads and more severe clinical symptoms as compared to animals infected with H1N1pdm09 or Spn alone. Interestingly, the donor animals that displayed the most severe clinical symptoms had reduced airborne transmission of H1N1pdm09. Based on these data, we propose an asymmetrical relationship between these two pathogens, rather than a synergistic one, since secondary bacterial infection enhances Spn colonization and pathogenesis but decreases viral titers.</p>","PeriodicalId":73024,"journal":{"name":"FEMS microbes","volume":"3 ","pages":"xtac007"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d6/ea/xtac007.PMC8981988.pdf","citationCount":"0","resultStr":"{\"title\":\"Secondary infection with <i>Streptococcus pneumoniae</i> decreases influenza virus replication and is linked to severe disease.\",\"authors\":\"Karina Mueller Brown, Valerie Le Sage, Andrea J French, Jennifer E Jones, Gabriella H Padovani, Annika J Avery, Stacey Schultz-Cherry, Jason W Rosch, N Luisa Hiller, Seema S Lakdawala\",\"doi\":\"10.1093/femsmc/xtac007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Secondary bacterial infection is a common complication in severe influenza virus infections. During the H1N1 pandemic of 2009, increased mortality was observed among healthy young adults due to secondary bacterial pneumonia, one of the most frequent bacterial species being <i>Streptococcus pneumoniae</i> (Spn). Previous studies in mice and ferrets have suggested a synergistic relationship between Spn and influenza viruses. In this study, the ferret model was used to examine whether secondary Spn infection (strains BHN97 and D39) influence replication and airborne transmission of the 2009 pandemic H1N1 virus (H1N1pdm09). Secondary infection with Spn after H1N1pdm09 infection consistently resulted in a significant decrease in viral titers in the ferret nasal washes. While secondary Spn infection appeared to negatively impact influenza virus replication, animals precolonized with Spn were equally susceptible to H1N1pdm09 airborne transmission. In line with previous work, ferrets with preceding H1N1pdm09 and secondary Spn infection had increased bacterial loads and more severe clinical symptoms as compared to animals infected with H1N1pdm09 or Spn alone. Interestingly, the donor animals that displayed the most severe clinical symptoms had reduced airborne transmission of H1N1pdm09. Based on these data, we propose an asymmetrical relationship between these two pathogens, rather than a synergistic one, since secondary bacterial infection enhances Spn colonization and pathogenesis but decreases viral titers.</p>\",\"PeriodicalId\":73024,\"journal\":{\"name\":\"FEMS microbes\",\"volume\":\"3 \",\"pages\":\"xtac007\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d6/ea/xtac007.PMC8981988.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsmc/xtac007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsmc/xtac007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

继发性细菌感染是严重流感病毒感染的常见并发症。在 2009 年甲型 H1N1 流感大流行期间,健康青壮年因继发性细菌性肺炎导致的死亡率上升,其中最常见的细菌是肺炎链球菌(Spn)。此前在小鼠和雪貂间进行的研究表明,Spn 与流感病毒之间存在协同作用关系。在本研究中,雪貂模型被用来检测 Spn(菌株 BHN97 和 D39)的二次感染是否会影响 2009 年大流行 H1N1 病毒(H1N1pdm09)的复制和空气传播。在感染 H1N1pdm09 后,Spn 的二次感染持续导致雪貂鼻腔洗液中的病毒滴度显著下降。虽然二次感染 Spn 似乎会对流感病毒的复制产生负面影响,但预先感染 Spn 的动物同样容易通过空气传播 H1N1pdm09。与之前的研究结果一致,与仅感染 H1N1pdm09 或 Spn 的动物相比,先感染 H1N1pdm09 并继发 Spn 的雪貂细菌量增加,临床症状也更严重。有趣的是,临床症状最严重的供体动物通过空气传播 H1N1pdm09 的情况有所减少。基于这些数据,我们认为这两种病原体之间的关系是不对称的,而不是协同作用的关系,因为继发性细菌感染会增强 Spn 的定植和致病能力,但会降低病毒滴度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Secondary infection with Streptococcus pneumoniae decreases influenza virus replication and is linked to severe disease.

Secondary bacterial infection is a common complication in severe influenza virus infections. During the H1N1 pandemic of 2009, increased mortality was observed among healthy young adults due to secondary bacterial pneumonia, one of the most frequent bacterial species being Streptococcus pneumoniae (Spn). Previous studies in mice and ferrets have suggested a synergistic relationship between Spn and influenza viruses. In this study, the ferret model was used to examine whether secondary Spn infection (strains BHN97 and D39) influence replication and airborne transmission of the 2009 pandemic H1N1 virus (H1N1pdm09). Secondary infection with Spn after H1N1pdm09 infection consistently resulted in a significant decrease in viral titers in the ferret nasal washes. While secondary Spn infection appeared to negatively impact influenza virus replication, animals precolonized with Spn were equally susceptible to H1N1pdm09 airborne transmission. In line with previous work, ferrets with preceding H1N1pdm09 and secondary Spn infection had increased bacterial loads and more severe clinical symptoms as compared to animals infected with H1N1pdm09 or Spn alone. Interestingly, the donor animals that displayed the most severe clinical symptoms had reduced airborne transmission of H1N1pdm09. Based on these data, we propose an asymmetrical relationship between these two pathogens, rather than a synergistic one, since secondary bacterial infection enhances Spn colonization and pathogenesis but decreases viral titers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信