{"title":"SPRED2通过调节p38 MAPK信号通路促进IL-1β诱导的骨关节炎软骨细胞的自噬和减轻炎症反应","authors":"Jie Wei , Guopeng You , Hongjuan Cheng , Chen Gao","doi":"10.1016/j.tice.2023.102086","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoarthritis (OA) is an age-related degenerative disease primarily characterized by articular cartilage degeneration. Many inflammatory mediators are upregulated in OA patients. Mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways play a role in the regulation of inflammatory response. Autophagy appears to exhibit a protective mechanism, and alleviate the symptoms of OA in rats. Dysregulation of SPRED2<span><span> is associated with various diseases involving inflammatory response. However, the role of SPRED2 in OA development remains to be investigated. The present work demonstrated that SPRED2 promoted autophagy and attenuated inflammatory response in IL-1β induced osteoarthritis chondrocytes via regulating the p38 MAPK </span>signaling pathway<span>. SPRED2 was downregulated in human knee cartilage tissues of OA patients and in IL-1β-induced chondrocytes. SPRED2 enhanced chondrocyte proliferation and prevented cell apoptosis induced by IL-1β. SPRED2 prevented IL-1β-induced chondrocytes autophagy and inflammatory response in chondrocytes. SPRED2 inhibited the activation of p38 MAPK signaling pathway and ameliorated OA injury of cartilage. Thus, SPRED2 promoted autophagy and inhibited inflammatory response by regulation of p38 MAPK signaling pathway in vivo.</span></span></p></div>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"82 ","pages":"Article 102086"},"PeriodicalIF":2.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPRED2 promotes autophagy and attenuates inflammatory response in IL-1β induced osteoarthritis chondrocytes via regulating the p38 MAPK signaling pathway\",\"authors\":\"Jie Wei , Guopeng You , Hongjuan Cheng , Chen Gao\",\"doi\":\"10.1016/j.tice.2023.102086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osteoarthritis (OA) is an age-related degenerative disease primarily characterized by articular cartilage degeneration. Many inflammatory mediators are upregulated in OA patients. Mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways play a role in the regulation of inflammatory response. Autophagy appears to exhibit a protective mechanism, and alleviate the symptoms of OA in rats. Dysregulation of SPRED2<span><span> is associated with various diseases involving inflammatory response. However, the role of SPRED2 in OA development remains to be investigated. The present work demonstrated that SPRED2 promoted autophagy and attenuated inflammatory response in IL-1β induced osteoarthritis chondrocytes via regulating the p38 MAPK </span>signaling pathway<span>. SPRED2 was downregulated in human knee cartilage tissues of OA patients and in IL-1β-induced chondrocytes. SPRED2 enhanced chondrocyte proliferation and prevented cell apoptosis induced by IL-1β. SPRED2 prevented IL-1β-induced chondrocytes autophagy and inflammatory response in chondrocytes. SPRED2 inhibited the activation of p38 MAPK signaling pathway and ameliorated OA injury of cartilage. Thus, SPRED2 promoted autophagy and inhibited inflammatory response by regulation of p38 MAPK signaling pathway in vivo.</span></span></p></div>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"82 \",\"pages\":\"Article 102086\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040816623000745\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040816623000745","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
SPRED2 promotes autophagy and attenuates inflammatory response in IL-1β induced osteoarthritis chondrocytes via regulating the p38 MAPK signaling pathway
Osteoarthritis (OA) is an age-related degenerative disease primarily characterized by articular cartilage degeneration. Many inflammatory mediators are upregulated in OA patients. Mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathways play a role in the regulation of inflammatory response. Autophagy appears to exhibit a protective mechanism, and alleviate the symptoms of OA in rats. Dysregulation of SPRED2 is associated with various diseases involving inflammatory response. However, the role of SPRED2 in OA development remains to be investigated. The present work demonstrated that SPRED2 promoted autophagy and attenuated inflammatory response in IL-1β induced osteoarthritis chondrocytes via regulating the p38 MAPK signaling pathway. SPRED2 was downregulated in human knee cartilage tissues of OA patients and in IL-1β-induced chondrocytes. SPRED2 enhanced chondrocyte proliferation and prevented cell apoptosis induced by IL-1β. SPRED2 prevented IL-1β-induced chondrocytes autophagy and inflammatory response in chondrocytes. SPRED2 inhibited the activation of p38 MAPK signaling pathway and ameliorated OA injury of cartilage. Thus, SPRED2 promoted autophagy and inhibited inflammatory response by regulation of p38 MAPK signaling pathway in vivo.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.