Karola Gerecht, Niklas Freund, Wei Liu, Yang Liu, Maximilian J L J Fürst, Philipp Holliger
{"title":"扩展的中心法则:基因组再合成,正交生物系统,合成遗传学。","authors":"Karola Gerecht, Niklas Freund, Wei Liu, Yang Liu, Maximilian J L J Fürst, Philipp Holliger","doi":"10.1146/annurev-biophys-111622-091203","DOIUrl":null,"url":null,"abstract":"<p><p>Synthetic biology seeks to probe fundamental aspects of biological form and function by construction [i.e., (re)synthesis] rather than deconstruction (analysis). In this sense, biological sciences now follow the lead given by the chemical sciences. Synthesis can complement analytic studies but also allows novel approaches to answering fundamental biological questions and opens up vast opportunities for the exploitation of biological processes to provide solutions for global problems. In this review, we explore aspects of this synthesis paradigm as applied to the chemistry and function of nucleic acids in biological systems and beyond, specifically, in genome resynthesis, synthetic genetics (i.e., the expansion of the genetic alphabet, of the genetic code, and of the chemical make-up of genetic systems), and the elaboration of orthogonal biosystems and components.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"52 ","pages":"413-432"},"PeriodicalIF":10.4000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614659/pdf/","citationCount":"1","resultStr":"{\"title\":\"The Expanded Central Dogma: Genome Resynthesis, Orthogonal Biosystems, Synthetic Genetics.\",\"authors\":\"Karola Gerecht, Niklas Freund, Wei Liu, Yang Liu, Maximilian J L J Fürst, Philipp Holliger\",\"doi\":\"10.1146/annurev-biophys-111622-091203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Synthetic biology seeks to probe fundamental aspects of biological form and function by construction [i.e., (re)synthesis] rather than deconstruction (analysis). In this sense, biological sciences now follow the lead given by the chemical sciences. Synthesis can complement analytic studies but also allows novel approaches to answering fundamental biological questions and opens up vast opportunities for the exploitation of biological processes to provide solutions for global problems. In this review, we explore aspects of this synthesis paradigm as applied to the chemistry and function of nucleic acids in biological systems and beyond, specifically, in genome resynthesis, synthetic genetics (i.e., the expansion of the genetic alphabet, of the genetic code, and of the chemical make-up of genetic systems), and the elaboration of orthogonal biosystems and components.</p>\",\"PeriodicalId\":50756,\"journal\":{\"name\":\"Annual Review of Biophysics\",\"volume\":\"52 \",\"pages\":\"413-432\"},\"PeriodicalIF\":10.4000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614659/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biophys-111622-091203\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-111622-091203","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
The Expanded Central Dogma: Genome Resynthesis, Orthogonal Biosystems, Synthetic Genetics.
Synthetic biology seeks to probe fundamental aspects of biological form and function by construction [i.e., (re)synthesis] rather than deconstruction (analysis). In this sense, biological sciences now follow the lead given by the chemical sciences. Synthesis can complement analytic studies but also allows novel approaches to answering fundamental biological questions and opens up vast opportunities for the exploitation of biological processes to provide solutions for global problems. In this review, we explore aspects of this synthesis paradigm as applied to the chemistry and function of nucleic acids in biological systems and beyond, specifically, in genome resynthesis, synthetic genetics (i.e., the expansion of the genetic alphabet, of the genetic code, and of the chemical make-up of genetic systems), and the elaboration of orthogonal biosystems and components.
期刊介绍:
The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.