{"title":"在遗传关联研究中,基于集合的稀疏替代品测试在测试结果集合与解释因素集合时的差异。","authors":"Ryan Sun, Andy Shi, Xihong Lin","doi":"10.1093/biostatistics/kxac036","DOIUrl":null,"url":null,"abstract":"<p><p>Set-based association tests are widely popular in genetic association settings for their ability to aggregate weak signals and reduce multiple testing burdens. In particular, a class of set-based tests including the Higher Criticism, Berk-Jones, and other statistics have recently been popularized for reaching a so-called detection boundary when signals are rare and weak. Such tests have been applied in two subtly different settings: (a) associating a genetic variant set with a single phenotype and (b) associating a single genetic variant with a phenotype set. A significant issue in practice is the choice of test, especially when deciding between innovated and generalized type methods for detection boundary tests. Conflicting guidance is present in the literature. This work describes how correlation structures generate marked differences in relative operating characteristics for settings (a) and (b). The implications for study design are significant. We also develop novel power bounds that facilitate the aforementioned calculations and allow for analysis of individual testing settings. In more concrete terms, our investigation is motivated by translational expression quantitative trait loci (eQTL) studies in lung cancer. These studies involve both testing for groups of variants associated with a single gene expression (multiple explanatory factors) and testing whether a single variant is associated with a group of gene expressions (multiple outcomes). Results are supported by a collection of simulation studies and illustrated through lung cancer eQTL examples.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724113/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differences in set-based tests for sparse alternatives when testing sets of outcomes compared to sets of explanatory factors in genetic association studies.\",\"authors\":\"Ryan Sun, Andy Shi, Xihong Lin\",\"doi\":\"10.1093/biostatistics/kxac036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Set-based association tests are widely popular in genetic association settings for their ability to aggregate weak signals and reduce multiple testing burdens. In particular, a class of set-based tests including the Higher Criticism, Berk-Jones, and other statistics have recently been popularized for reaching a so-called detection boundary when signals are rare and weak. Such tests have been applied in two subtly different settings: (a) associating a genetic variant set with a single phenotype and (b) associating a single genetic variant with a phenotype set. A significant issue in practice is the choice of test, especially when deciding between innovated and generalized type methods for detection boundary tests. Conflicting guidance is present in the literature. This work describes how correlation structures generate marked differences in relative operating characteristics for settings (a) and (b). The implications for study design are significant. We also develop novel power bounds that facilitate the aforementioned calculations and allow for analysis of individual testing settings. In more concrete terms, our investigation is motivated by translational expression quantitative trait loci (eQTL) studies in lung cancer. These studies involve both testing for groups of variants associated with a single gene expression (multiple explanatory factors) and testing whether a single variant is associated with a group of gene expressions (multiple outcomes). Results are supported by a collection of simulation studies and illustrated through lung cancer eQTL examples.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724113/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxac036\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxac036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Differences in set-based tests for sparse alternatives when testing sets of outcomes compared to sets of explanatory factors in genetic association studies.
Set-based association tests are widely popular in genetic association settings for their ability to aggregate weak signals and reduce multiple testing burdens. In particular, a class of set-based tests including the Higher Criticism, Berk-Jones, and other statistics have recently been popularized for reaching a so-called detection boundary when signals are rare and weak. Such tests have been applied in two subtly different settings: (a) associating a genetic variant set with a single phenotype and (b) associating a single genetic variant with a phenotype set. A significant issue in practice is the choice of test, especially when deciding between innovated and generalized type methods for detection boundary tests. Conflicting guidance is present in the literature. This work describes how correlation structures generate marked differences in relative operating characteristics for settings (a) and (b). The implications for study design are significant. We also develop novel power bounds that facilitate the aforementioned calculations and allow for analysis of individual testing settings. In more concrete terms, our investigation is motivated by translational expression quantitative trait loci (eQTL) studies in lung cancer. These studies involve both testing for groups of variants associated with a single gene expression (multiple explanatory factors) and testing whether a single variant is associated with a group of gene expressions (multiple outcomes). Results are supported by a collection of simulation studies and illustrated through lung cancer eQTL examples.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.