{"title":"番石榴的生物活性成分、抗氧化和抗菌活性及其对耐多药和食源性致病菌的抑制作用。L成熟过程中的水果。","authors":"Ambreen Bano, Anmol Gupta, Smita Rai, Swati Sharma, Tarun Kumar Upadhyay, Lamya Ahmed Al-Keridis, Nawaf Alshammari, Neelam Pathak, Marcello Iriti, Mohd Saeed","doi":"10.1007/s12033-023-00779-y","DOIUrl":null,"url":null,"abstract":"<p><p>Psidium guajava fruits are highly appreciated for their nutrients and bioactive compounds content, which contribute to their antioxidant and antimicrobial capacities. The purpose of this study was to determine bioactive compound (phenolic, flavonoids, and carotenoid contents), antioxidant activity (DPPH, ABTS, ORAC, and FRAP), and antibacterial potential against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus during different stages of fruit ripening.The results elucidated that ripe fruits (methanolic extract) contain the highest total phenolic, flavonoids, and carotenoid contents (417.36 ± 2.63 µg GAE/gm of FW, 711.78 ± 0.70 µg QE/gm of FW and 0.683 ± 0.06 µg/gm of FW) followed by hexane, ethyl acetate, and aqueous. Methanolic extract of the ripe fruits showed the highest antioxidant activity when measured by DPPH (61.55 ± 0.91%), FRAP (31.83 ± 0.98 mM Fe(II)/gm of FW), ORAC (17.19 ± 0.47 mM TE/ gm of FW), and ABTS (41.31 ± 0.99 µmol Trolox/gm of FW) assays. In the antibacterial assay, the ripe stage had the highest antibacterial activity against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus. The methanolic ripe extract was found to possess maximum antibacterial activity ZOI, MIC, and IC50 18.00 ± 1.00 mm, 95.95 ± 0.05%, and 0.58 μg/ml; 15.66 ± 0.57 mm, 94.66 ± 0.19%, and 0.50 μg/ml, respectively, against pathogenic and MDR strains of E. coli and 22.33 ± 0.57 mm, 98.97 ± 0.02%, and 0.26 μg/ml; 20.33 ± 1.15 mm, 96.82 ± 0.14%, and 0.39 μg/ml, respectively, against pathogenic and MDR strains of S. aureus. Considering the bioactive compounds and beneficial effects, these fruit extracts could be promising antibiotic alternatives, avoiding antibiotic overuse and its negative effects on human health and the environment, and can be recommended as a novel functional food.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":"3070-3088"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioactive Compounds, Antioxidant, and Antibacterial Activity Against MDR and Food-Borne Pathogenic Bacteria of Psidium guajava. L Fruit During Ripening.\",\"authors\":\"Ambreen Bano, Anmol Gupta, Smita Rai, Swati Sharma, Tarun Kumar Upadhyay, Lamya Ahmed Al-Keridis, Nawaf Alshammari, Neelam Pathak, Marcello Iriti, Mohd Saeed\",\"doi\":\"10.1007/s12033-023-00779-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Psidium guajava fruits are highly appreciated for their nutrients and bioactive compounds content, which contribute to their antioxidant and antimicrobial capacities. The purpose of this study was to determine bioactive compound (phenolic, flavonoids, and carotenoid contents), antioxidant activity (DPPH, ABTS, ORAC, and FRAP), and antibacterial potential against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus during different stages of fruit ripening.The results elucidated that ripe fruits (methanolic extract) contain the highest total phenolic, flavonoids, and carotenoid contents (417.36 ± 2.63 µg GAE/gm of FW, 711.78 ± 0.70 µg QE/gm of FW and 0.683 ± 0.06 µg/gm of FW) followed by hexane, ethyl acetate, and aqueous. Methanolic extract of the ripe fruits showed the highest antioxidant activity when measured by DPPH (61.55 ± 0.91%), FRAP (31.83 ± 0.98 mM Fe(II)/gm of FW), ORAC (17.19 ± 0.47 mM TE/ gm of FW), and ABTS (41.31 ± 0.99 µmol Trolox/gm of FW) assays. In the antibacterial assay, the ripe stage had the highest antibacterial activity against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus. The methanolic ripe extract was found to possess maximum antibacterial activity ZOI, MIC, and IC50 18.00 ± 1.00 mm, 95.95 ± 0.05%, and 0.58 μg/ml; 15.66 ± 0.57 mm, 94.66 ± 0.19%, and 0.50 μg/ml, respectively, against pathogenic and MDR strains of E. coli and 22.33 ± 0.57 mm, 98.97 ± 0.02%, and 0.26 μg/ml; 20.33 ± 1.15 mm, 96.82 ± 0.14%, and 0.39 μg/ml, respectively, against pathogenic and MDR strains of S. aureus. Considering the bioactive compounds and beneficial effects, these fruit extracts could be promising antibiotic alternatives, avoiding antibiotic overuse and its negative effects on human health and the environment, and can be recommended as a novel functional food.</p>\",\"PeriodicalId\":18865,\"journal\":{\"name\":\"Molecular Biotechnology\",\"volume\":\" \",\"pages\":\"3070-3088\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12033-023-00779-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-023-00779-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Bioactive Compounds, Antioxidant, and Antibacterial Activity Against MDR and Food-Borne Pathogenic Bacteria of Psidium guajava. L Fruit During Ripening.
Psidium guajava fruits are highly appreciated for their nutrients and bioactive compounds content, which contribute to their antioxidant and antimicrobial capacities. The purpose of this study was to determine bioactive compound (phenolic, flavonoids, and carotenoid contents), antioxidant activity (DPPH, ABTS, ORAC, and FRAP), and antibacterial potential against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus during different stages of fruit ripening.The results elucidated that ripe fruits (methanolic extract) contain the highest total phenolic, flavonoids, and carotenoid contents (417.36 ± 2.63 µg GAE/gm of FW, 711.78 ± 0.70 µg QE/gm of FW and 0.683 ± 0.06 µg/gm of FW) followed by hexane, ethyl acetate, and aqueous. Methanolic extract of the ripe fruits showed the highest antioxidant activity when measured by DPPH (61.55 ± 0.91%), FRAP (31.83 ± 0.98 mM Fe(II)/gm of FW), ORAC (17.19 ± 0.47 mM TE/ gm of FW), and ABTS (41.31 ± 0.99 µmol Trolox/gm of FW) assays. In the antibacterial assay, the ripe stage had the highest antibacterial activity against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus. The methanolic ripe extract was found to possess maximum antibacterial activity ZOI, MIC, and IC50 18.00 ± 1.00 mm, 95.95 ± 0.05%, and 0.58 μg/ml; 15.66 ± 0.57 mm, 94.66 ± 0.19%, and 0.50 μg/ml, respectively, against pathogenic and MDR strains of E. coli and 22.33 ± 0.57 mm, 98.97 ± 0.02%, and 0.26 μg/ml; 20.33 ± 1.15 mm, 96.82 ± 0.14%, and 0.39 μg/ml, respectively, against pathogenic and MDR strains of S. aureus. Considering the bioactive compounds and beneficial effects, these fruit extracts could be promising antibiotic alternatives, avoiding antibiotic overuse and its negative effects on human health and the environment, and can be recommended as a novel functional food.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.