Kaili Yang, Jiacai Mo, Shanjun Luo, Yi Peng, Shenghui Fang, Xianting Wu, Renshan Zhu, Yuanjin Li, Ningge Yuan, Cong Zhou, Yan Gong
{"title":"基于光合积累模型的无人机影像估算水稻地上生物量","authors":"Kaili Yang, Jiacai Mo, Shanjun Luo, Yi Peng, Shenghui Fang, Xianting Wu, Renshan Zhu, Yuanjin Li, Ningge Yuan, Cong Zhou, Yan Gong","doi":"10.34133/plantphenomics.0056","DOIUrl":null,"url":null,"abstract":"<p><p>The effective and accurate aboveground biomass (AGB) estimation facilitates evaluating crop growth and site-specific crop management. Considering that rice accumulates AGB mainly through green leaf photosynthesis, we proposed the photosynthetic accumulation model (PAM) and its simplified version and compared them for estimating AGB. These methods estimate the AGB of various rice cultivars throughout the growing season by integrating vegetation index (VI) and canopy height based on images acquired by unmanned aerial vehicles (UAV). The results indicated that the correlation of VI and AGB was weak for the whole growing season of rice and the accuracy of the height model was also limited for the whole growing season. In comparison with the NDVI-based rice AGB estimation model in 2019 data (<i>R</i><sup>2</sup> = 0.03, RMSE = 603.33 g/m<sup>2</sup>) and canopy height (<i>R</i><sup>2</sup> = 0.79, RMSE = 283.33 g/m<sup>2</sup>), the PAM calculated by NDVI and canopy height could provide a better estimate of AGB of rice (<i>R</i><sup>2</sup> = 0.95, RMSE = 136.81 g/m<sup>2</sup>). Then, based on the time-series analysis of the accumulative model, a simplified photosynthetic accumulation model (SPAM) was proposed that only needs limited observations to achieve <i>R</i><sup>2</sup> above 0.8. The PAM and SPAM models built by using 2 years of samples successfully predicted the third year of samples and also demonstrated the robustness and generalization ability of the models. In conclusion, these methods can be easily and efficiently applied to the UAV estimation of rice AGB over the entire growing season, which has great potential to serve for large-scale field management and also for breeding.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"5 ","pages":"0056"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238111/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimation of Rice Aboveground Biomass by UAV Imagery with Photosynthetic Accumulation Models.\",\"authors\":\"Kaili Yang, Jiacai Mo, Shanjun Luo, Yi Peng, Shenghui Fang, Xianting Wu, Renshan Zhu, Yuanjin Li, Ningge Yuan, Cong Zhou, Yan Gong\",\"doi\":\"10.34133/plantphenomics.0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The effective and accurate aboveground biomass (AGB) estimation facilitates evaluating crop growth and site-specific crop management. Considering that rice accumulates AGB mainly through green leaf photosynthesis, we proposed the photosynthetic accumulation model (PAM) and its simplified version and compared them for estimating AGB. These methods estimate the AGB of various rice cultivars throughout the growing season by integrating vegetation index (VI) and canopy height based on images acquired by unmanned aerial vehicles (UAV). The results indicated that the correlation of VI and AGB was weak for the whole growing season of rice and the accuracy of the height model was also limited for the whole growing season. In comparison with the NDVI-based rice AGB estimation model in 2019 data (<i>R</i><sup>2</sup> = 0.03, RMSE = 603.33 g/m<sup>2</sup>) and canopy height (<i>R</i><sup>2</sup> = 0.79, RMSE = 283.33 g/m<sup>2</sup>), the PAM calculated by NDVI and canopy height could provide a better estimate of AGB of rice (<i>R</i><sup>2</sup> = 0.95, RMSE = 136.81 g/m<sup>2</sup>). Then, based on the time-series analysis of the accumulative model, a simplified photosynthetic accumulation model (SPAM) was proposed that only needs limited observations to achieve <i>R</i><sup>2</sup> above 0.8. The PAM and SPAM models built by using 2 years of samples successfully predicted the third year of samples and also demonstrated the robustness and generalization ability of the models. In conclusion, these methods can be easily and efficiently applied to the UAV estimation of rice AGB over the entire growing season, which has great potential to serve for large-scale field management and also for breeding.</p>\",\"PeriodicalId\":20318,\"journal\":{\"name\":\"Plant Phenomics\",\"volume\":\"5 \",\"pages\":\"0056\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238111/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Phenomics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.34133/plantphenomics.0056\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0056","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Estimation of Rice Aboveground Biomass by UAV Imagery with Photosynthetic Accumulation Models.
The effective and accurate aboveground biomass (AGB) estimation facilitates evaluating crop growth and site-specific crop management. Considering that rice accumulates AGB mainly through green leaf photosynthesis, we proposed the photosynthetic accumulation model (PAM) and its simplified version and compared them for estimating AGB. These methods estimate the AGB of various rice cultivars throughout the growing season by integrating vegetation index (VI) and canopy height based on images acquired by unmanned aerial vehicles (UAV). The results indicated that the correlation of VI and AGB was weak for the whole growing season of rice and the accuracy of the height model was also limited for the whole growing season. In comparison with the NDVI-based rice AGB estimation model in 2019 data (R2 = 0.03, RMSE = 603.33 g/m2) and canopy height (R2 = 0.79, RMSE = 283.33 g/m2), the PAM calculated by NDVI and canopy height could provide a better estimate of AGB of rice (R2 = 0.95, RMSE = 136.81 g/m2). Then, based on the time-series analysis of the accumulative model, a simplified photosynthetic accumulation model (SPAM) was proposed that only needs limited observations to achieve R2 above 0.8. The PAM and SPAM models built by using 2 years of samples successfully predicted the third year of samples and also demonstrated the robustness and generalization ability of the models. In conclusion, these methods can be easily and efficiently applied to the UAV estimation of rice AGB over the entire growing season, which has great potential to serve for large-scale field management and also for breeding.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.