Lanfang Ma, Shuo Wang, Jun Yang, Weicheng Tang, Zhangying Wu, Lili Cao, Aiyue Luo, Fangfang Fu, Shuhong Yang, Shixuan Wang
{"title":"MiR-145通过靶向Arpc5和随后的细胞骨架重塑来调节小鼠原代颗粒细胞中的甾体生成。","authors":"Lanfang Ma, Shuo Wang, Jun Yang, Weicheng Tang, Zhangying Wu, Lili Cao, Aiyue Luo, Fangfang Fu, Shuhong Yang, Shixuan Wang","doi":"10.1262/jrd.2022-137","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNA (miR)-145 is enriched in the follicular granulosa cells (GCs) of 3-week-old mice. Downregulating miR-145 inhibits the proliferation and differentiation of GCs and induces evident changes in their cytoskeleton. In this study, we examined how miR-145 induces cytoskeletal changes in mouse GCs and its potential mechanism in regulating GC steroidogenesis. We found that actin related protein 2/3 complex subunit 5 (Arpc5) is a target of miR-145. The miR-145 antagomir increased ARPC5 expression but not β-ACTIN, β-TUBULIN, and PAXILLIN expression. Arpc5 overexpression inhibited GC proliferation, differentiation, and progesterone synthesis. Furthermore, the expression of progesterone synthesis-associated enzymes was downregulated in the Arpc5 overexpression group, and the GC cytoskeleton exhibited evident changes. We conclude that Arpc5, a new target of miR-145, regulates primary GC proliferation and progesterone production by regulating the cytoskeleton remodeling.</p>","PeriodicalId":16942,"journal":{"name":"Journal of Reproduction and Development","volume":"69 3","pages":"154-162"},"PeriodicalIF":1.9000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/8e/jrd-69-154.PMC10267586.pdf","citationCount":"0","resultStr":"{\"title\":\"MiR-145 regulates steroidogenesis in mouse primary granulosa cells by targeting Arpc5 and subsequent cytoskeleton remodeling.\",\"authors\":\"Lanfang Ma, Shuo Wang, Jun Yang, Weicheng Tang, Zhangying Wu, Lili Cao, Aiyue Luo, Fangfang Fu, Shuhong Yang, Shixuan Wang\",\"doi\":\"10.1262/jrd.2022-137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNA (miR)-145 is enriched in the follicular granulosa cells (GCs) of 3-week-old mice. Downregulating miR-145 inhibits the proliferation and differentiation of GCs and induces evident changes in their cytoskeleton. In this study, we examined how miR-145 induces cytoskeletal changes in mouse GCs and its potential mechanism in regulating GC steroidogenesis. We found that actin related protein 2/3 complex subunit 5 (Arpc5) is a target of miR-145. The miR-145 antagomir increased ARPC5 expression but not β-ACTIN, β-TUBULIN, and PAXILLIN expression. Arpc5 overexpression inhibited GC proliferation, differentiation, and progesterone synthesis. Furthermore, the expression of progesterone synthesis-associated enzymes was downregulated in the Arpc5 overexpression group, and the GC cytoskeleton exhibited evident changes. We conclude that Arpc5, a new target of miR-145, regulates primary GC proliferation and progesterone production by regulating the cytoskeleton remodeling.</p>\",\"PeriodicalId\":16942,\"journal\":{\"name\":\"Journal of Reproduction and Development\",\"volume\":\"69 3\",\"pages\":\"154-162\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/41/8e/jrd-69-154.PMC10267586.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reproduction and Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1262/jrd.2022-137\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1262/jrd.2022-137","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
MiR-145 regulates steroidogenesis in mouse primary granulosa cells by targeting Arpc5 and subsequent cytoskeleton remodeling.
MicroRNA (miR)-145 is enriched in the follicular granulosa cells (GCs) of 3-week-old mice. Downregulating miR-145 inhibits the proliferation and differentiation of GCs and induces evident changes in their cytoskeleton. In this study, we examined how miR-145 induces cytoskeletal changes in mouse GCs and its potential mechanism in regulating GC steroidogenesis. We found that actin related protein 2/3 complex subunit 5 (Arpc5) is a target of miR-145. The miR-145 antagomir increased ARPC5 expression but not β-ACTIN, β-TUBULIN, and PAXILLIN expression. Arpc5 overexpression inhibited GC proliferation, differentiation, and progesterone synthesis. Furthermore, the expression of progesterone synthesis-associated enzymes was downregulated in the Arpc5 overexpression group, and the GC cytoskeleton exhibited evident changes. We conclude that Arpc5, a new target of miR-145, regulates primary GC proliferation and progesterone production by regulating the cytoskeleton remodeling.
期刊介绍:
Journal of Reproduction and Development (JRD) is the
official journal of the Society for Reproduction and Development,
published bimonthly, and welcomes original articles. JRD
provides free full-text access of all the published articles on
the web. The functions of the journal are managed by Editorial
Board Members, such as the Editor-in-Chief, Co-Editor-inChief, Managing Editors and Editors. All manuscripts are
peer-reviewed critically by two or more reviewers. Acceptance
is based on scientific content and presentation of the materials.
The Editors select reviewers and correspond with authors. Final
decisions about acceptance or rejection of manuscripts are made
by the Editor-in-Chief and Co-Editor-in-Chief.