Nicole E. Chin, Tiffany C. Wu, J. Michael O'Toole, Kevin Xu, Tom Hata, Mimi A. R. Koehl
{"title":"鞭藻形成的多细胞菌落增加了被变形虫捕食者捕获的敏感性","authors":"Nicole E. Chin, Tiffany C. Wu, J. Michael O'Toole, Kevin Xu, Tom Hata, Mimi A. R. Koehl","doi":"10.1111/jeu.12961","DOIUrl":null,"url":null,"abstract":"<p>Many heterotrophic microbial eukaryotes are size-selective feeders. Some microorganisms increase their size by forming multicellular colonies. We used choanoflagellates, <i>Salpingoeca helianthica</i>, which can be unicellular or form multicellular colonies, to study the effects of multicellularity on vulnerability to predation by the raptorial protozoan predator, <i>Amoeba proteus</i>, which captures prey with pseudopodia. Videomicrography used to measure the behavior of interacting <i>S. helianthica</i> and <i>A. proteus</i> revealed that large choanoflagellate colonies were more susceptible to capture than were small colonies or single cells. Swimming colonies produced larger flow fields than did swimming unicellular choanoflagellates, and the distance of <i>S. helianthica</i> from <i>A. proteus</i> when pseudopod formation started was greater for colonies than for single cells. Prey size did not affect the number of pseudopodia formed and the time between their formation, pulsatile kinematics and speed of extension by pseudopodia, or percent of prey lost by the predator. <i>S. helianthica</i> did not change swimming speed or execute escape maneuvers in response to being pursued by pseudopodia, so size-selective feeding by <i>A. proteus</i> was due to predator behavior rather than prey escape. Our results do not support the theory that the selective advantage of becoming multicellular by choanoflagellate-like ancestors of animals was reduced susceptibility to protozoan predation.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":"70 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of multicellular colonies by choanoflagellates increases susceptibility to capture by amoeboid predators\",\"authors\":\"Nicole E. Chin, Tiffany C. Wu, J. Michael O'Toole, Kevin Xu, Tom Hata, Mimi A. R. Koehl\",\"doi\":\"10.1111/jeu.12961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Many heterotrophic microbial eukaryotes are size-selective feeders. Some microorganisms increase their size by forming multicellular colonies. We used choanoflagellates, <i>Salpingoeca helianthica</i>, which can be unicellular or form multicellular colonies, to study the effects of multicellularity on vulnerability to predation by the raptorial protozoan predator, <i>Amoeba proteus</i>, which captures prey with pseudopodia. Videomicrography used to measure the behavior of interacting <i>S. helianthica</i> and <i>A. proteus</i> revealed that large choanoflagellate colonies were more susceptible to capture than were small colonies or single cells. Swimming colonies produced larger flow fields than did swimming unicellular choanoflagellates, and the distance of <i>S. helianthica</i> from <i>A. proteus</i> when pseudopod formation started was greater for colonies than for single cells. Prey size did not affect the number of pseudopodia formed and the time between their formation, pulsatile kinematics and speed of extension by pseudopodia, or percent of prey lost by the predator. <i>S. helianthica</i> did not change swimming speed or execute escape maneuvers in response to being pursued by pseudopodia, so size-selective feeding by <i>A. proteus</i> was due to predator behavior rather than prey escape. Our results do not support the theory that the selective advantage of becoming multicellular by choanoflagellate-like ancestors of animals was reduced susceptibility to protozoan predation.</p>\",\"PeriodicalId\":15672,\"journal\":{\"name\":\"Journal of Eukaryotic Microbiology\",\"volume\":\"70 3\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Eukaryotic Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jeu.12961\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jeu.12961","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Formation of multicellular colonies by choanoflagellates increases susceptibility to capture by amoeboid predators
Many heterotrophic microbial eukaryotes are size-selective feeders. Some microorganisms increase their size by forming multicellular colonies. We used choanoflagellates, Salpingoeca helianthica, which can be unicellular or form multicellular colonies, to study the effects of multicellularity on vulnerability to predation by the raptorial protozoan predator, Amoeba proteus, which captures prey with pseudopodia. Videomicrography used to measure the behavior of interacting S. helianthica and A. proteus revealed that large choanoflagellate colonies were more susceptible to capture than were small colonies or single cells. Swimming colonies produced larger flow fields than did swimming unicellular choanoflagellates, and the distance of S. helianthica from A. proteus when pseudopod formation started was greater for colonies than for single cells. Prey size did not affect the number of pseudopodia formed and the time between their formation, pulsatile kinematics and speed of extension by pseudopodia, or percent of prey lost by the predator. S. helianthica did not change swimming speed or execute escape maneuvers in response to being pursued by pseudopodia, so size-selective feeding by A. proteus was due to predator behavior rather than prey escape. Our results do not support the theory that the selective advantage of becoming multicellular by choanoflagellate-like ancestors of animals was reduced susceptibility to protozoan predation.
期刊介绍:
The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.