{"title":"DNMT3b通过DNA超甲基化调节FLI1影响结直肠癌的发展。","authors":"Lei Zhou, Li-Zhen Pan, Yue-Juan Fan","doi":"10.1002/kjm2.12647","DOIUrl":null,"url":null,"abstract":"<p><p>Friend leukemia integration 1 (FLI1) is an ETS transcription factor family member. Here, we identified cg11017065 as the most hyper-methylated cytosine and guanine (CpG) in colorectal cancer (CRC), which belongs to the FLI1 gene. Moreover, integrated bioinformatics prediction and analysis of our cohort showed that FLI1 expression was downregulated and DNA methylation was elevated in CRC. Bioinformatics prediction also indicated that patients overexpressing FLI1 had higher survival rates than those with low FLI1 expression. CRC cells with ectopic expression of FLI1 had reduced invasion, migration, cloning ability and increased apoptosis. Furthermore, DNA-methyltransferase 3b (DNMT3b) was found to be significantly overexpressed in CRC, and low DNMT3b expression predicted a prolonged survival. DNMT3b bound to the FLI1 promoter. Inhibition of DNMT3b increased FLI1 expression and inhibited the malignant phenotype of CRC cells. Inhibition of FLI1 reversed the phenotypic modulation by DNMT3b depletion in vitro and in vivo. In conclusion, our data indicate that DNMT3b potentiates CRC cell proliferation, migration, and invasion through downregulating FLI1.</p>","PeriodicalId":49946,"journal":{"name":"Kaohsiung Journal of Medical Sciences","volume":"39 4","pages":"364-376"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNMT3b affects colorectal cancer development by regulating FLI1 through DNA hypermethylation.\",\"authors\":\"Lei Zhou, Li-Zhen Pan, Yue-Juan Fan\",\"doi\":\"10.1002/kjm2.12647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Friend leukemia integration 1 (FLI1) is an ETS transcription factor family member. Here, we identified cg11017065 as the most hyper-methylated cytosine and guanine (CpG) in colorectal cancer (CRC), which belongs to the FLI1 gene. Moreover, integrated bioinformatics prediction and analysis of our cohort showed that FLI1 expression was downregulated and DNA methylation was elevated in CRC. Bioinformatics prediction also indicated that patients overexpressing FLI1 had higher survival rates than those with low FLI1 expression. CRC cells with ectopic expression of FLI1 had reduced invasion, migration, cloning ability and increased apoptosis. Furthermore, DNA-methyltransferase 3b (DNMT3b) was found to be significantly overexpressed in CRC, and low DNMT3b expression predicted a prolonged survival. DNMT3b bound to the FLI1 promoter. Inhibition of DNMT3b increased FLI1 expression and inhibited the malignant phenotype of CRC cells. Inhibition of FLI1 reversed the phenotypic modulation by DNMT3b depletion in vitro and in vivo. In conclusion, our data indicate that DNMT3b potentiates CRC cell proliferation, migration, and invasion through downregulating FLI1.</p>\",\"PeriodicalId\":49946,\"journal\":{\"name\":\"Kaohsiung Journal of Medical Sciences\",\"volume\":\"39 4\",\"pages\":\"364-376\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kaohsiung Journal of Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/kjm2.12647\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kaohsiung Journal of Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/kjm2.12647","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
DNMT3b affects colorectal cancer development by regulating FLI1 through DNA hypermethylation.
Friend leukemia integration 1 (FLI1) is an ETS transcription factor family member. Here, we identified cg11017065 as the most hyper-methylated cytosine and guanine (CpG) in colorectal cancer (CRC), which belongs to the FLI1 gene. Moreover, integrated bioinformatics prediction and analysis of our cohort showed that FLI1 expression was downregulated and DNA methylation was elevated in CRC. Bioinformatics prediction also indicated that patients overexpressing FLI1 had higher survival rates than those with low FLI1 expression. CRC cells with ectopic expression of FLI1 had reduced invasion, migration, cloning ability and increased apoptosis. Furthermore, DNA-methyltransferase 3b (DNMT3b) was found to be significantly overexpressed in CRC, and low DNMT3b expression predicted a prolonged survival. DNMT3b bound to the FLI1 promoter. Inhibition of DNMT3b increased FLI1 expression and inhibited the malignant phenotype of CRC cells. Inhibition of FLI1 reversed the phenotypic modulation by DNMT3b depletion in vitro and in vivo. In conclusion, our data indicate that DNMT3b potentiates CRC cell proliferation, migration, and invasion through downregulating FLI1.
期刊介绍:
Kaohsiung Journal of Medical Sciences (KJMS), is the official peer-reviewed open access publication of Kaohsiung Medical University, Taiwan. The journal was launched in 1985 to promote clinical and scientific research in the medical sciences in Taiwan, and to disseminate this research to the international community. It is published monthly by Wiley. KJMS aims to publish original research and review papers in all fields of medicine and related disciplines that are of topical interest to the medical profession. Authors are welcome to submit Perspectives, reviews, original articles, short communications, Correspondence and letters to the editor for consideration.