分布随机梯度下降瞬态时间的一个尖锐估计

IF 6.2 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Shi Pu;Alex Olshevsky;Ioannis Ch. Paschalidis
{"title":"分布随机梯度下降瞬态时间的一个尖锐估计","authors":"Shi Pu;Alex Olshevsky;Ioannis Ch. Paschalidis","doi":"10.1109/TAC.2021.3126253","DOIUrl":null,"url":null,"abstract":"This article is concerned with minimizing the average of \n<inline-formula><tex-math>$n$</tex-math></inline-formula>\n cost functions over a network, in which agents may communicate and exchange information with each other. We consider the setting where only noisy gradient information is available. To solve the problem, we study the distributed stochastic gradient descent (DSGD) method and perform a nonasymptotic convergence analysis. For strongly convex and smooth objective functions, in expectation, DSGD asymptotically achieves the optimal network-independent convergence rate compared to centralized stochastic gradient descent. Our main contribution is to characterize the transient time needed for DSGD to approach the asymptotic convergence rate. Moreover, we construct a “hard” optimization problem that proves the sharpness of the obtained result. Numerical experiments demonstrate the tightness of the theoretical results.","PeriodicalId":13201,"journal":{"name":"IEEE Transactions on Automatic Control","volume":"67 11","pages":"5900-5915"},"PeriodicalIF":6.2000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9609587","citationCount":"44","resultStr":"{\"title\":\"A Sharp Estimate on the Transient Time of Distributed Stochastic Gradient Descent\",\"authors\":\"Shi Pu;Alex Olshevsky;Ioannis Ch. Paschalidis\",\"doi\":\"10.1109/TAC.2021.3126253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article is concerned with minimizing the average of \\n<inline-formula><tex-math>$n$</tex-math></inline-formula>\\n cost functions over a network, in which agents may communicate and exchange information with each other. We consider the setting where only noisy gradient information is available. To solve the problem, we study the distributed stochastic gradient descent (DSGD) method and perform a nonasymptotic convergence analysis. For strongly convex and smooth objective functions, in expectation, DSGD asymptotically achieves the optimal network-independent convergence rate compared to centralized stochastic gradient descent. Our main contribution is to characterize the transient time needed for DSGD to approach the asymptotic convergence rate. Moreover, we construct a “hard” optimization problem that proves the sharpness of the obtained result. Numerical experiments demonstrate the tightness of the theoretical results.\",\"PeriodicalId\":13201,\"journal\":{\"name\":\"IEEE Transactions on Automatic Control\",\"volume\":\"67 11\",\"pages\":\"5900-5915\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2021-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9609587\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Automatic Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9609587/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Automatic Control","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9609587/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 44

摘要

本文关注的是最小化网络上$n$成本函数的平均值,在网络中,代理可以相互通信和交换信息。我们考虑只有噪声梯度信息可用的设置。为了解决这个问题,我们研究了分布式随机梯度下降(DSGD)方法,并进行了非症状收敛性分析。对于强凸光滑的目标函数,与集中式随机梯度下降相比,DSGD在预期中渐近地实现了最优的网络无关收敛速度。我们的主要贡献是描述DSGD接近渐近收敛速度所需的瞬态时间。此外,我们构造了一个“硬”优化问题,证明了所获得结果的清晰度。数值实验证明了理论结果的严密性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sharp Estimate on the Transient Time of Distributed Stochastic Gradient Descent
This article is concerned with minimizing the average of $n$ cost functions over a network, in which agents may communicate and exchange information with each other. We consider the setting where only noisy gradient information is available. To solve the problem, we study the distributed stochastic gradient descent (DSGD) method and perform a nonasymptotic convergence analysis. For strongly convex and smooth objective functions, in expectation, DSGD asymptotically achieves the optimal network-independent convergence rate compared to centralized stochastic gradient descent. Our main contribution is to characterize the transient time needed for DSGD to approach the asymptotic convergence rate. Moreover, we construct a “hard” optimization problem that proves the sharpness of the obtained result. Numerical experiments demonstrate the tightness of the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Automatic Control
IEEE Transactions on Automatic Control 工程技术-工程:电子与电气
CiteScore
11.30
自引率
5.90%
发文量
824
审稿时长
9 months
期刊介绍: In the IEEE Transactions on Automatic Control, the IEEE Control Systems Society publishes high-quality papers on the theory, design, and applications of control engineering. Two types of contributions are regularly considered: 1) Papers: Presentation of significant research, development, or application of control concepts. 2) Technical Notes and Correspondence: Brief technical notes, comments on published areas or established control topics, corrections to papers and notes published in the Transactions. In addition, special papers (tutorials, surveys, and perspectives on the theory and applications of control systems topics) are solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信