Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui
{"title":"酶杂化纳米花和酶@金属有机框架复合材料:迷人的杂化纳米生物催化剂。","authors":"Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui","doi":"10.1080/07388551.2023.2189548","DOIUrl":null,"url":null,"abstract":"<p><p>Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"674-697"},"PeriodicalIF":8.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts.\",\"authors\":\"Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui\",\"doi\":\"10.1080/07388551.2023.2189548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.</p>\",\"PeriodicalId\":10752,\"journal\":{\"name\":\"Critical Reviews in Biotechnology\",\"volume\":\" \",\"pages\":\"674-697\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07388551.2023.2189548\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/4/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2023.2189548","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts.
Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.
期刊介绍:
Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.