Hubèrt M.J. van Hees , Koen Chiers , Leo A. den Hartog , Theo A.T.G. van Kempen , Dominiek Maes , Sam Millet , Geert P.J. Janssens
{"title":"在乳猪的饮食中添加燕麦壳改变了它们的肠道和结肠微生物群的发育","authors":"Hubèrt M.J. van Hees , Koen Chiers , Leo A. den Hartog , Theo A.T.G. van Kempen , Dominiek Maes , Sam Millet , Geert P.J. Janssens","doi":"10.1016/j.aninu.2022.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Current study evaluated the effect of a fine and coarsely ground insoluble dietary fibre source on the gastrointestinal development of suckling pigs. Oat hulls (OH) were selected as a model feedstuff, rich in cellulose, lignin, and insoluble dietary fibre. Three experimental supplemental diets were formulated: a finely ground, low fibre and nutrient dense diet served as control (CON). For the 2 high fibre diets, 15% heat-treated starch in CON was exchanged with OH, either finely (OH-f) or coarsely ground (OH-c). Litters of 10 primi- and multiparous sows (mean litter size 14.6 ± 0.84) were used. Within a litter, experimental diets were allotted to triplets of 4 piglets. From approximately 12 d of age, piglets’ individual feed intakes were recorded 2 times per day when separated from their dam for 70 min. Piglets could suckle with their dam for the remainder of the day. On d 24 and 25, from the total pool of 120 piglets, seven healthy well-eating piglets per treatment were selected for post-mortem evaluation, resulting in 14 replicates per treatment. Consumption of OH-c and OH-f did not impede clinical health and production performance of piglets. The full stomach weights tended to be greater for OH-c compared to OH-f whereas CON was intermediate (<em>P</em> = 0.083). Supplementing OH significantly increased ileal villus height and caecal dry matter concentration (<em>P</em> < 0.05). For the colon, OH increased its length, contents weight, short-chain fatty acid concentration and reduced total bacterial count as well as γ-proteobacteria count and proportion (<em>P</em> < 0.05). The OH-c treatment specifically increased full gastrointestinal tract weight and caecum contents weight compared to piglets fed CON and OH-f. Furthermore, OH-c reduced colonic crypt depth when compared to OH-f (<em>P</em> = 0.018). In conclusion, supplementing OH to a diet for suckling piglets exerted subtle developmental effects on gastrointestinal morphology and colonic microbial community. These effects were largely independent from the particle size of the OH.</p></div>","PeriodicalId":62604,"journal":{"name":"Animal Nutrition","volume":"12 ","pages":"Pages 284-296"},"PeriodicalIF":6.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065989/pdf/main.pdf","citationCount":"0","resultStr":"{\"title\":\"Supplementing oat hulls to the diet of suckling piglets altered their intestinal tract and colonic microbiota development\",\"authors\":\"Hubèrt M.J. van Hees , Koen Chiers , Leo A. den Hartog , Theo A.T.G. van Kempen , Dominiek Maes , Sam Millet , Geert P.J. Janssens\",\"doi\":\"10.1016/j.aninu.2022.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current study evaluated the effect of a fine and coarsely ground insoluble dietary fibre source on the gastrointestinal development of suckling pigs. Oat hulls (OH) were selected as a model feedstuff, rich in cellulose, lignin, and insoluble dietary fibre. Three experimental supplemental diets were formulated: a finely ground, low fibre and nutrient dense diet served as control (CON). For the 2 high fibre diets, 15% heat-treated starch in CON was exchanged with OH, either finely (OH-f) or coarsely ground (OH-c). Litters of 10 primi- and multiparous sows (mean litter size 14.6 ± 0.84) were used. Within a litter, experimental diets were allotted to triplets of 4 piglets. From approximately 12 d of age, piglets’ individual feed intakes were recorded 2 times per day when separated from their dam for 70 min. Piglets could suckle with their dam for the remainder of the day. On d 24 and 25, from the total pool of 120 piglets, seven healthy well-eating piglets per treatment were selected for post-mortem evaluation, resulting in 14 replicates per treatment. Consumption of OH-c and OH-f did not impede clinical health and production performance of piglets. The full stomach weights tended to be greater for OH-c compared to OH-f whereas CON was intermediate (<em>P</em> = 0.083). Supplementing OH significantly increased ileal villus height and caecal dry matter concentration (<em>P</em> < 0.05). For the colon, OH increased its length, contents weight, short-chain fatty acid concentration and reduced total bacterial count as well as γ-proteobacteria count and proportion (<em>P</em> < 0.05). The OH-c treatment specifically increased full gastrointestinal tract weight and caecum contents weight compared to piglets fed CON and OH-f. Furthermore, OH-c reduced colonic crypt depth when compared to OH-f (<em>P</em> = 0.018). In conclusion, supplementing OH to a diet for suckling piglets exerted subtle developmental effects on gastrointestinal morphology and colonic microbial community. These effects were largely independent from the particle size of the OH.</p></div>\",\"PeriodicalId\":62604,\"journal\":{\"name\":\"Animal Nutrition\",\"volume\":\"12 \",\"pages\":\"Pages 284-296\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065989/pdf/main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Nutrition\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405654522001470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405654522001470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Supplementing oat hulls to the diet of suckling piglets altered their intestinal tract and colonic microbiota development
Current study evaluated the effect of a fine and coarsely ground insoluble dietary fibre source on the gastrointestinal development of suckling pigs. Oat hulls (OH) were selected as a model feedstuff, rich in cellulose, lignin, and insoluble dietary fibre. Three experimental supplemental diets were formulated: a finely ground, low fibre and nutrient dense diet served as control (CON). For the 2 high fibre diets, 15% heat-treated starch in CON was exchanged with OH, either finely (OH-f) or coarsely ground (OH-c). Litters of 10 primi- and multiparous sows (mean litter size 14.6 ± 0.84) were used. Within a litter, experimental diets were allotted to triplets of 4 piglets. From approximately 12 d of age, piglets’ individual feed intakes were recorded 2 times per day when separated from their dam for 70 min. Piglets could suckle with their dam for the remainder of the day. On d 24 and 25, from the total pool of 120 piglets, seven healthy well-eating piglets per treatment were selected for post-mortem evaluation, resulting in 14 replicates per treatment. Consumption of OH-c and OH-f did not impede clinical health and production performance of piglets. The full stomach weights tended to be greater for OH-c compared to OH-f whereas CON was intermediate (P = 0.083). Supplementing OH significantly increased ileal villus height and caecal dry matter concentration (P < 0.05). For the colon, OH increased its length, contents weight, short-chain fatty acid concentration and reduced total bacterial count as well as γ-proteobacteria count and proportion (P < 0.05). The OH-c treatment specifically increased full gastrointestinal tract weight and caecum contents weight compared to piglets fed CON and OH-f. Furthermore, OH-c reduced colonic crypt depth when compared to OH-f (P = 0.018). In conclusion, supplementing OH to a diet for suckling piglets exerted subtle developmental effects on gastrointestinal morphology and colonic microbial community. These effects were largely independent from the particle size of the OH.
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to primarily to the nutrition of farm animals and aquatic species. More applied aspects of animal nutrition, such as the evaluation of novel ingredients, feed additives and feed safety will also be considered but it is expected that such studies will have a strong nutritional focus. Animal Nutrition is indexed in SCIE, PubMed Central, Scopus, DOAJ, etc.