{"title":"专利景观突出wnt5a痛苦肽Foxy5的双刃支架。","authors":"Vikas Yadav, Rubina Islam, Hardeep Singh Tuli","doi":"10.4155/ppa-2022-0037","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant expression of the WNT signaling pathway has been associated with cancer progression and recurrence. Research over the decades has led to development of WNT-targetable small molecules, but has faced challenges in translating to clinics. Unlike WNT/β-catenin inhibitors, WNT5A-mimicking peptide, Foxy5 has shown encouraging efficacy in impairing metastasis of cancers with low or absent WNT5A expression. Recent patent application US20210008149 advocates the implication of Foxy5 for treatment and prevention of cancer relapse. The inventors have demonstrated the anti-stemness activity of Foxy5 in mice xenograft model via suppressing the expression of colonic cancer stem cell markers. Foxy5 also exhibits non-toxic nature when administered alone or in synergy with standard chemotherapy thus strengthening its candidature in the field of cancer therapeutics.</p>","PeriodicalId":20011,"journal":{"name":"Pharmaceutical patent analyst","volume":"12 2","pages":"69-77"},"PeriodicalIF":1.8000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patent landscape highlighting double-edged scaffold of a WNT5A-agonizing peptide, Foxy5.\",\"authors\":\"Vikas Yadav, Rubina Islam, Hardeep Singh Tuli\",\"doi\":\"10.4155/ppa-2022-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aberrant expression of the WNT signaling pathway has been associated with cancer progression and recurrence. Research over the decades has led to development of WNT-targetable small molecules, but has faced challenges in translating to clinics. Unlike WNT/β-catenin inhibitors, WNT5A-mimicking peptide, Foxy5 has shown encouraging efficacy in impairing metastasis of cancers with low or absent WNT5A expression. Recent patent application US20210008149 advocates the implication of Foxy5 for treatment and prevention of cancer relapse. The inventors have demonstrated the anti-stemness activity of Foxy5 in mice xenograft model via suppressing the expression of colonic cancer stem cell markers. Foxy5 also exhibits non-toxic nature when administered alone or in synergy with standard chemotherapy thus strengthening its candidature in the field of cancer therapeutics.</p>\",\"PeriodicalId\":20011,\"journal\":{\"name\":\"Pharmaceutical patent analyst\",\"volume\":\"12 2\",\"pages\":\"69-77\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical patent analyst\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4155/ppa-2022-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical patent analyst","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4155/ppa-2022-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Patent landscape highlighting double-edged scaffold of a WNT5A-agonizing peptide, Foxy5.
Aberrant expression of the WNT signaling pathway has been associated with cancer progression and recurrence. Research over the decades has led to development of WNT-targetable small molecules, but has faced challenges in translating to clinics. Unlike WNT/β-catenin inhibitors, WNT5A-mimicking peptide, Foxy5 has shown encouraging efficacy in impairing metastasis of cancers with low or absent WNT5A expression. Recent patent application US20210008149 advocates the implication of Foxy5 for treatment and prevention of cancer relapse. The inventors have demonstrated the anti-stemness activity of Foxy5 in mice xenograft model via suppressing the expression of colonic cancer stem cell markers. Foxy5 also exhibits non-toxic nature when administered alone or in synergy with standard chemotherapy thus strengthening its candidature in the field of cancer therapeutics.