没食子酸对各种活性氧、氮和硫的自由基清除活性:DFT方法。

IF 3.6 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ankit Mittal, Vinod Kumar Vashistha, Dipak Kumar Das
{"title":"没食子酸对各种活性氧、氮和硫的自由基清除活性:DFT方法。","authors":"Ankit Mittal,&nbsp;Vinod Kumar Vashistha,&nbsp;Dipak Kumar Das","doi":"10.1080/10715762.2023.2197556","DOIUrl":null,"url":null,"abstract":"<p><p>Gallic acid is a well-recognized naturally occurring compound possessing antioxidant activities. The free radical scavenging ability of gallic acid for fifty reactive species, such as oxygen, nitrogen, and sulfur-containing species, has been studied using the formal hydrogen atom transfer mechanism. The theoretical studies have been conducted in the gas phase and aqueous solution at M05-2X/6-311++G** level using the density functional theory (DFT) calculations. The relative damaging potential of all the reactive species has been compared by investigating their hydrogen atom and electron affinity. Furthermore, a comparison of their relative reactivity was made by evaluating several global chemical reactivity descriptors. Additionally, the feasibility of scavenging the species by gallic acid has been studied by computing the redox potentials and equilibrium constants for the overall process in the aqueous solution.</p>","PeriodicalId":12411,"journal":{"name":"Free Radical Research","volume":"57 2","pages":"81-90"},"PeriodicalIF":3.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Free radical scavenging activity of gallic acid toward various reactive oxygen, nitrogen, and sulfur species: a DFT approach.\",\"authors\":\"Ankit Mittal,&nbsp;Vinod Kumar Vashistha,&nbsp;Dipak Kumar Das\",\"doi\":\"10.1080/10715762.2023.2197556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gallic acid is a well-recognized naturally occurring compound possessing antioxidant activities. The free radical scavenging ability of gallic acid for fifty reactive species, such as oxygen, nitrogen, and sulfur-containing species, has been studied using the formal hydrogen atom transfer mechanism. The theoretical studies have been conducted in the gas phase and aqueous solution at M05-2X/6-311++G** level using the density functional theory (DFT) calculations. The relative damaging potential of all the reactive species has been compared by investigating their hydrogen atom and electron affinity. Furthermore, a comparison of their relative reactivity was made by evaluating several global chemical reactivity descriptors. Additionally, the feasibility of scavenging the species by gallic acid has been studied by computing the redox potentials and equilibrium constants for the overall process in the aqueous solution.</p>\",\"PeriodicalId\":12411,\"journal\":{\"name\":\"Free Radical Research\",\"volume\":\"57 2\",\"pages\":\"81-90\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10715762.2023.2197556\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10715762.2023.2197556","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

没食子酸是一种公认的天然化合物,具有抗氧化活性。利用正式的氢原子转移机制,研究了没食子酸对氧、氮和含硫等50种活性物质的自由基清除能力。采用密度泛函理论(DFT)计算方法,在M05-2X/6-311++G**水平的气相和水溶液中进行了理论研究。通过对所有活性物质的氢原子和电子亲和关系,比较了它们的相对破坏势。此外,通过评估几个全局化学反应性描述符,对它们的相对反应性进行了比较。此外,通过计算水溶液中整个过程的氧化还原电位和平衡常数,研究了没食子酸清除该物种的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free radical scavenging activity of gallic acid toward various reactive oxygen, nitrogen, and sulfur species: a DFT approach.

Gallic acid is a well-recognized naturally occurring compound possessing antioxidant activities. The free radical scavenging ability of gallic acid for fifty reactive species, such as oxygen, nitrogen, and sulfur-containing species, has been studied using the formal hydrogen atom transfer mechanism. The theoretical studies have been conducted in the gas phase and aqueous solution at M05-2X/6-311++G** level using the density functional theory (DFT) calculations. The relative damaging potential of all the reactive species has been compared by investigating their hydrogen atom and electron affinity. Furthermore, a comparison of their relative reactivity was made by evaluating several global chemical reactivity descriptors. Additionally, the feasibility of scavenging the species by gallic acid has been studied by computing the redox potentials and equilibrium constants for the overall process in the aqueous solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Free Radical Research
Free Radical Research 生物-生化与分子生物学
CiteScore
6.70
自引率
0.00%
发文量
47
审稿时长
3 months
期刊介绍: Free Radical Research publishes high-quality research papers, hypotheses and reviews in free radicals and other reactive species in biological, clinical, environmental and other systems; redox signalling; antioxidants, including diet-derived antioxidants and other relevant aspects of human nutrition; and oxidative damage, mechanisms and measurement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信